Skip to main content
Log in

Mollusk microbiota shift during Angiostrongylus cantonensis infection in the freshwater snail Biomphalaria glabrata and the terrestrial slug Phillocaulis soleiformis

  • Helminthology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

In the present work, we reported for the first time the microbiome from Phyllocaulis soleiformis and Biomphalaria glabrata assessed using high-throughput DNA sequencing pre- and post-infection with the helminth parasite Angiostrongylus cantonensis. B. glabrata and P. soleiformis were experimentally infected with A. cantonensis. Fecal DNAs from control and infected groups were extracted and subjected to 16S rRNA high-throughput sequencing survey. No significant differences were found in the alpha diversity indexes in Phyllocaulis and Biomphalaria experiments independently. PCoA analysis using the unweighted UniFrac measures showed that both microbiotas behaved differently depending on the host. In Biomphalaria microbiota, control and infected groups were significantly different (p = 0.0219), while Phyllocaulis samples were not (p = 0.5190). The microbiome of P. soleiformis infected with A. cantonensis showed a significant decrease of Sphingobacterium and a substantial increase of Cellvibrio when compared to a control group. The microbiome of B. glabrata infected with A. cantonensis showed a significant decline in the abundance of Flavobacterium, Fluviicola, Nitrospira, Vogesella and an OTU belonging to the family Comamonadaceae, and a significant increase of Uliginosibacterium and an OTU belonging to the family Weeksellaceae when compared to a control group. Overall, the microbiome data reported here provided valuable information with regard to the diversity of bacterial communities that comprise the gut microbiome of gastropods. Furthermore, we report here the effect of the infection of the helminth A. cantonensis in the ratio and distribution of the fecal microbiome of the snails. Further studies are highly valuable in order to better understand those interactions by comparing different microbiome profiles and mollusk models. By now, we anticipate that ecological studies will take significant advantage of these advances, particularly concerning improving our understanding of helminth-microbiome-host interactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Banevicius NM, Zanotti-Magalhães EM, Magalhães LA, Linhares AX (2006) Behavior of Angiostrongylus costaricensis in planorbids. Braz J Biol 66:199–204

    CAS  PubMed  Google Scholar 

  • Barçante TA, Barçante JMP, Fujiwara RT, Lima WS (2012) Analysis of circulant haemocytes from Biomphalaria glabrata following Angiostrongylus varosum infection using flow cytometry. J Parasitol Res 2012:314723

    PubMed  PubMed Central  Google Scholar 

  • Bates ST, Berg-Lyons D, Caporaso JG, Walters WA, Knight R, Fierer N (2011) Examining the global distribution of dominant archaeal populations in soil. ISME Journal 5:908–917

    CAS  Google Scholar 

  • Benson AK, Kelly SA, Legge R, Ma F, Low SJ, Kim J, Zhang M, Oh PL, Nehrenberg D, Hua K, Kachman SD, Moriyama EN, Walter J, Peterson DA, Pomp D (2010) Individuality in gut microbiota composition is a complex polygenic trait shaped by multiple environmental and host genetic factors. PNAS 107:18933–18938

    CAS  PubMed  PubMed Central  Google Scholar 

  • Bowman JP (2014) The family Cryomorphaceae. In: Rosenberg E, DeLong EF, Lory S, Stackebrandt E, Thompson F (eds) The prokaryotes. Springer, Berlin, Heidelberg

    Google Scholar 

  • Caporaso JG, Kuczynski J, Stombaugh J, Bittinger K, Bushman FD, Costelo EK, Fierer N et al (2010) QIIME allows analysis of high-throughput community sequencing data. Nat Methods 7:335–336

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cardoso AM, Cavalcante JJV, Cantão ME, Thompson CE, Flatschart RB, Glogauer A, Scapin SMN, Sade YB, Beltrão PJMSI, Gerber AL, Martins OB, Garcia ES, de Souza W, Vasconcelos ATR (2012) Metagenomic analysis of the microbiota from the crop of an invasive snail reveals a rich reservoir of novel genes. PLoS One 7:e48505

    CAS  PubMed  PubMed Central  Google Scholar 

  • Charrier M, Combet-Blanc Y, Ollivier B (1998) Bacterial flora in the gut of Helix aspersa (Gastropoda Pulmonata): evidence for a permanent population with a dominant homolactic intestinal bacterium, Enterococcus casseliflavus. Can J Microbiol 44:20–27

    CAS  Google Scholar 

  • Charrier M, Fonty G, Gaillard-Martinie B, Ainouche K, Andant G (2006) Isolation and characterization of cultivable fermentative bacteria from the intestine of two edible snails, Helix pomatia and Cornu aspersum (Gastropoda: Pulmonata). Biol Res 39:669–681

    CAS  PubMed  Google Scholar 

  • Clarke KR (1993) Non-parametric multivariate analyses of changes in community structure. Austral Ecology 18:117–143

    Google Scholar 

  • Cole JR, Wang Q, Fish JA, Chai B, McGarrell DM, Sun Y, Brown CT et al (2014) Ribosomal Database Project: data and tools for high throughput rRNA analysis. Nucleic Acids Res 42:D633–D642

    CAS  PubMed  Google Scholar 

  • Cutler RG, Thompson KW, Camandola S, Mack KT, Mattson MP (2014) Sphingolipid metabolism regulates development and lifespan in Caenorhabditis elegans. Mech Ageing Dev 143-144:9–18

    CAS  PubMed  Google Scholar 

  • Dar MA, Pawar KD, Jadhav JP, Pandit RS (2015) Isolation of cellulolytic bacteria from the gastro-intestinal tract of Achatina fulica (Gastropoda: Pulmonata) and their evolution for cellulose biodegradation. Int Biodeterior Biodegradation 98:73–80

    CAS  Google Scholar 

  • Dar MA, Pawar K, Pandit RS (2017) Gut microbiome analysis of snails: a biotechnological approach. In: Ray S (ed) Organismal and molecular malacology. European Union, IntechOpen

    Google Scholar 

  • Davis J, Fricke WF, Hamann MT, Esquenazi E, Dorrestein PC, Hill RT (2013) Characterization of the bacterial community of the chemically defended Hawaiian sacoglossan Elysia rufescens. Appl Environ Microbiol 79:7073–7081

    CAS  PubMed  PubMed Central  Google Scholar 

  • DeSantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T et al (2006) Greengenes, a chimera-checked 16S rRNA gene database and workbench compatible with ARB. Appl Environ Microbiol 72:5069–5072

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ducklow HW, Boyle PJ, Maugel PW, Strong C, Mitchell R (1979) Bacterial flora of the schistosome vector snail Biomphalaria glabrata. Appl Environ Microbiol 38:667–672

    CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2010) Search and clustering orders of magnitude faster than BLAST. Bioinformatics 26:2460–2461

    CAS  PubMed  Google Scholar 

  • Edgar RC (2013) UPARSE: highly accurate OTU sequences from microbial. Nat Methods 10:996–998

    CAS  PubMed  Google Scholar 

  • Engelbrektson A, Kunin V, Wrighton KC, Zvenigorodsky N, Chen F, Ochman H, Hugenholtz P (2010) Experimental factors affecting PCR-based estimates of microbial species richness and evenness. The ISME Journal 4:642–647

    CAS  PubMed  Google Scholar 

  • Giongo A, Gano KA, Crabb DB, Mukherjee N, Novelo LL, Casella G, Drew JC et al (2010) Toward defining the autoimmune microbiome for type 1 diabetes. The ISME Journal 5:82–91

    PubMed  PubMed Central  Google Scholar 

  • Gkarmini K, Mahmood S, Ekblad A, Alström HN, Finlay R (2017) Identifying the active microbiome associated with roots and rhizosphere soil of oilseed rape. Appl Environ Microbiol 83:e01938–e01917

    Google Scholar 

  • Guo Y, Xun Z, Coffman SR, Chen F (2017) The shift of the intestinal microbiome in the innate immunity-deficient mutant rde-1 strain of C. elegans upon Orsay virus infection. Front Microbiol 8:933

    PubMed  PubMed Central  Google Scholar 

  • Hu Z, Chen X, Chang J, Yu J, Tong Q, Li S, Niu H (2018) Compositional and predicted functional analysis of the gut microbiota of Radix auricularia (Linnaeus) via high-throughput Illumina sequencing. PeerJ 6:e5537

    PubMed  PubMed Central  Google Scholar 

  • Ilseung C, Blaser MJ (2012) The human microbiome: at the interface of health and disease. Nature 13:260–270

    Google Scholar 

  • Johnson WR, Torralba M, Fair PA, Bossart GD, Nelson KE, Morris PJ (2009) Novel diversity of bacterial communities associated with bottlenose dolphin upper respiratory tracts. Environ Microbiol Rep 1:555–562

    CAS  PubMed  Google Scholar 

  • Kay GL, Millard A, Sergeaunt MJ, Midzi N, Gwisai R, Mduluza T, Ivens A et al (2015) Differences in the faecal microbiome in Schistosoma haematobium infected children vs. uninfected children. PLoS Neglected Tropical Diseases 9:e0003861

    PubMed  PubMed Central  Google Scholar 

  • Leung JM, Graham AL, Knowles SCL (2018) Parasite-microbiota interactions with the vertebrate gut: synthesis through an ecological lens. Front Microbiol 9:843

    PubMed  PubMed Central  Google Scholar 

  • Llewellyn MS, Leadbeater S, Garcia C, Sylvain F-E, Custodio M, Ang KP, Powell F, Carvalho GR, Creer S, Elliot J, Derome N (2017) Parasitism perturbs the mucosal microbiome of Atlantic Salmon. Sci Rep 7:43465

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lozupone CA, Knight R (2008) Species divergence and the measurement of microbial diversity. Federation of European Microbiological Societies of Microbiology Reviews 32:557–578

    CAS  Google Scholar 

  • Lozupone C, Lladser ME, Knights D, Stombaugh J, Knight R (2011) UniFrac: an effective distance metric for microbial community comparison. The ISME Journal 5:169–172

    PubMed  Google Scholar 

  • McMurdy PJ, Holmes S (2013) Phyloseq: an R package for reproducible interactive analysis and graphics of microbiome census data. PLoS ONE 8:e61217

    Google Scholar 

  • Mergaert J, Lednická D, Goris J, Cnockaert MC, De Vos P, Swings J (2003) Taxonomic study of Cellvibrio strains and description of Cellvibrio ostraviensis sp. nov., Cellvibrio fibrivorans sp. nov. and Cellvibrio gandavensis sp. nov. Int J Evol Microbiol 53:465–471

    CAS  Google Scholar 

  • Morera P (1973) Life history and redescription of Angiostrongylus costaricensis Morera and Céspedes, 1971. The American Society of Tropical Medicine and Hygiene 22:613–621

    CAS  Google Scholar 

  • Mouchka ME, Hewson I, Harvell CD (2010) Coral-associated bacterial assemblages: current knowledge and the potential for climate-driven impacts. Integr Comp Biol 50:662–674

    PubMed  Google Scholar 

  • Nakagawa Y, Sakane T, Yokota A (1996) Transfer of “Pseudomonas riboflavina” (Foster 1944), a gram-negative, motile rod with long-chain 3-hydroxy fatty acids, to Devosia riboflavina gen. nov., sp. nov., nom. rev. Int J Syst Bacteriol 46:16–22

    CAS  PubMed  Google Scholar 

  • Neupane S, Modry D, Pafčo B, Zurek L (2019) Bacterial community of the digestive tract of the European medicinal leech (Hirudo verbana) from the Danube River. Microb Ecol 77:1082–1090

    CAS  PubMed  Google Scholar 

  • Newton RJ, McLellan SL (2015) A unique assemblage of cosmopolitan freshwater bacteria and higher community diversity differentiate an urbanized estuary from oligotrophic Lake Michigan. Front Microbiol 6:1028

    PubMed  PubMed Central  Google Scholar 

  • Nobre V, Serufo JC, Carvalho OS, Mendonça CLGF, Santos G, Mota EM, Gomes D et al (2004) Alteration in the endogenous intestinal flora of Swiss Webster mice by experimental Angiostrongylus costaricensis infection. Mem Inst Oswaldo Cruz 99:717–720

    PubMed  Google Scholar 

  • O'Sullivan LA, Rinna J, Humphreys G, Weightman AJ, Fry JC (2005) Fluviicola taffensis gen. nov., sp. nov., a novel freshwater bacterium of the family Cryomorphaceae in the phylum ‘Bacteroidetes’. Int J Syst Evol Microbiol 55:2189–2194

    CAS  PubMed  Google Scholar 

  • Pantos O, Bythell JC (2006) Bacterial community structure associated with white band disease in the elkhorn coral Acroporapalmata determined using culture-independent 16S rRNA technique. Dis Aquat Org 69:79–88

    CAS  Google Scholar 

  • Pantos O, Cooney RP, Le Tissier MD, Barer MR, O’Donnell AG, Bythell JC (2003) The bacterial ecology of a plague-like disease affecting the Caribbean coral Montastrea annularis. Environ Microbiol 5:370–382

    CAS  PubMed  Google Scholar 

  • Paraense WL (2001) The schistosome vectors in the Americas. Mem Inst Oswaldo Cruz 96:7–16

    PubMed  Google Scholar 

  • Parks DH, Tyson GW, Hugenholtz P, Beiko RG (2014) STAMP: statistical analysis of taxonomic and functional profiles. Bioinformatics 30:3123–3124

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pindling S, Azulai D, Zheng B, Dahan D, Perron GG (2018) Dysbiosis and early mortality of zebrafish larvae exposed to subclinical concentrations of streptomycin. FEMS Microbiol Lett 365:fny188

    CAS  PubMed Central  Google Scholar 

  • Pinheiro GL, Correa RF, Cunha RS, Cardoso AM, Chaia C, Clementino MM, Garcia ES et al (2015) Isolation of aerobic cultivable cellulolytic bacteria from different regions of the gastrointestinal tract of giant land snail Achatina fulica. Front Microbiol 6:860

    PubMed  PubMed Central  Google Scholar 

  • Portet A, Toulza E, Lokmer A, Huot C, Duval D, Galinier R, Gourbal B (2018) Dysbiosis of the Biomphalaria glabrata vector snail microbiota following infection by Schistosoma parasites. bioRxiv. https://doi.org/10.1101/386623

  • R Core Team (2013) R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL http://www.R-project.org/

  • Romalde JL, Barja JL (2010) Bacteria in molluscs: good and bad guys. In: Méndez-Vilas A (ed) Current research, technology and education topics in applied microbiology and microbial biotechnology: microbiology series, vol 1, pp 136–147

    Google Scholar 

  • Scheiermann J, Klinman DM (2017) Three distinct pneumotypes characterize the microbiome of the lung in BALB/cJ mice. PLoS One 12:e0180561

    PubMed  PubMed Central  Google Scholar 

  • Schmieder R, Edwards R (2011) Quality control and preprocessing of metagenomic datasets. Bioinformatics 27:863–864

    CAS  PubMed  PubMed Central  Google Scholar 

  • Silva TM, Melo ES, Lopes ACS, Veras DL, Duarte CR, Alves LC, Brayner FA (2013) Characterization of the bacterial microbiota of Biomphalaria glabrata (Say, 1818) (Mollusca: Gastropoda) from Brazil. Lett Appl Microbiol 57:19–25

    CAS  PubMed  Google Scholar 

  • Steenhard NR, Jungersen G, Kokotovic B, Beshah E, Dawson HD, Urban JF Jr, Roepstorff A, Sm T (2009) Ascaris suum infection negatively affects the response to a Mycoplasma hyopneumoniae vaccination and subsequent challenge infection in pigs. Vaccine 27:5161–5169

    CAS  PubMed  Google Scholar 

  • Teixeira CG, Thiengo SC, Thome JW, Medeiros AB, Camillo-Coura L, Agostini AA (1993) On the diversity of mollusk intermediate hosts of Angiostrongylus costaricensis Morera & Cespedes, 1971 in southern Brazil. Mem Inst Oswaldo Cruz 88:487–489

    CAS  PubMed  Google Scholar 

  • Van Horn DJ, Garcia JR, Loker ES, Mitchell KR, Garcia JR, Loker ES, Mitchell KR et al (2012) Complex intestinal bacterial communities in three species of planorbid snails. J Molluscan Stud 78:74–80

    Google Scholar 

  • Vázquez-Baeza Y, Pirrung M, Gonzalez A, Knight R (2013) EMPeror: a tool for visualizing high-throughput microbial community data. Gigascience 2:16

    PubMed  PubMed Central  Google Scholar 

  • Wallace GD, Rosen L (1969) Techniques for recovering and identifying larvae of Angiostrongylus cantonensis. Malacologia 7:427–438

    Google Scholar 

  • Wang Q, Garrity GM, Tiedje JM, Cole JR (2007) Naive Bayesian classifier for rapid assignment of rRNA sequences into the new bacterial taxonomy. Appl Environ Microbiol 73:5261–5267

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Q-P, Lai D-H, Zhu X-Q, Chen X-G, Lun Z-R (2008) Human angiostrongyliasis. Lancet Infect Dis 8:621–630

    PubMed  Google Scholar 

  • Willcox HP, Coura JR (1989) A new design of the Baermann, Moraes, Coutinho’s technique for the isolation of nematode larva. Memorias do Instituto Oswaldo Cruz 84(4):563–565

    CAS  PubMed  Google Scholar 

  • Yong HS, Song SL, Chua KO, Lim PE (2017) High diversity of bacterial communities in developmental stages of Bactrocera carambolae (Insecta: Tephritidae) revealed by Illumina MiSeq sequencing of 16S rRNA gene. Curr Microbiol 74:1076–1082

    CAS  PubMed  Google Scholar 

  • Zaneveld JR, McMinds R, Thurber RV (2017) Stress and stability: applying the Anna Karenina principle to animal microbiomes. Nat Microbiol 2:17121

    CAS  PubMed  Google Scholar 

  • Zhang M, Sun Y, Liu Y, Qiao F, Chen L, Liu W-T, Du Z, Li E (2015) Response of gut microbiota to salinity change in two euryhaline aquatic animals with reverse salinity preference. Aquaculture 454:72–80

    Google Scholar 

  • Zhang F, Berg M, Dierking K, Félix MA, Shapira M, Samuel BS, Schulenburg H (2017) Caenorhabditis elegans as a model for microbiome research. Front Microbiol 8:485

    PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

We thank the High-Performance Computing Lab - LAD/PUCRS for allowing us access to run high-throughput sequence analyses for this study.

Funding

This work was supported by the Conselho Nacional de Pesquisa e Desenvolvimento Tecnológico do Brasil (CNPq)—grant nos. CNPq PQ1D 307005/2014-3 (2014) and 406149/2016-0 (2016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Loureiro Morassutti.

Additional information

Section Editor: Charlotte Oskam

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Osório, J.B., de Mattos Pereira, L., Giongo, A. et al. Mollusk microbiota shift during Angiostrongylus cantonensis infection in the freshwater snail Biomphalaria glabrata and the terrestrial slug Phillocaulis soleiformis. Parasitol Res 119, 2495–2503 (2020). https://doi.org/10.1007/s00436-020-06743-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06743-y

Keywords

Navigation