Unexpected diversity in northern Europe: trematodes from salmonid fishes in Iceland with two new species of Crepidostomum Braun, 1900

Abstract

In 2018 and 2019, salmonid fishes, Salmo trutta L. and Salvelinus alpinus (L.) from lakes in Iceland were assessed for trematodes during a parasitological examination. Combined morphological and molecular analyses revealed the presence of four trematode species, two of which were previously known to parasitise salmonids in Iceland, Crepidostomum farionis (Müller, 1780) and Phyllodistomum umblae (Fabricius, 1780), and the two remaining species were recognised as new to science. Morphologically and genetically, Crepidostomum brinkmanni n. sp. and C. pseudofarionis n. sp. are closely related to two European species, namely C. metoecus and C. farionis. However, C. brinkmanni n. sp. is distinct by the position of maximum body width and arrangement of vitelline follicles; C. pseudofarionis n. sp. is distinct by its stout body, position of maximum body width, size of muscular papillae relative to oral sucker and the anterior extent of vitelline follicles. The new species were previously molecularly detected in their intermediate and definitive hosts in Norway and Ukraine, but their sequences were not supplemented with any morphological characterisation. In the present study, we provide detailed morphological descriptions and molecular sequences (28S rDNA and ITS2) of the four species of trematodes detected in Iceland. The discovery of the two new species of Crepidostomum indicates that the trematode diversity in fishes in the north is higher than previously known; our finding doubles the species spectrum of fish trematodes for Iceland. The record of C. brinkmanni from Ukraine indicates that its distribution might not be limited to northern latitudes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Atopkin DM, Shedko MB (2014) Genetic characterization of far eastern species of the genus Crepidostomum (Trematoda: Allocreadiidae) by means of 28S ribosomal DNA sequences. Adv Biosci Biotechnol 5:209–215

    Google Scholar 

  2. Bakke TA (1984) A redescription of adult Phyllodistomum umblae (Fabricius) (Digenea; Gorgoderidae) from Salvelinus alpinus (L.) in Norway. Zool Scr 13:89–99

    Google Scholar 

  3. Bakke TA (1985) Phyllodistomum conostomum (Olson, 1876) (Digenea, Gorgoderidae): a junior subjective synonym for P. umblae (Fabricius, 1780). Zool Scr 14:161–168

    Google Scholar 

  4. Bakke TA (1988) Morphology of adult Phyllodistomum umblae (Fabricius) (Platyhelminthes, Gorgoderidae): the effect of preparation, killing and fixation procedures. Zool Scr 17:1–3

    Google Scholar 

  5. Bakke TA, Lien L (1978) The tegumental surface of Phyllodistomum conostomum (Olsson, 1876) (Digenea), revealed by scanning electron microscopy. Int J Parasitol-Par 8:155–161

  6. Bakke TA, Bailey RE (1987) Phyllodistomum umblae (Fabricius) (Digenea, Gorgoderidae) from British Columbia salmonids: a description based on light and scanning electron microscopy. Can J Zool 65:1703–1712

    Google Scholar 

  7. Bauer ON (1987) Key to parasites of freshwater fish of the fauna of USSR, volume 3. Parasitic Metazoa. Izdatelstvo Nauka, Leningrad 585 p

  8. Biological Diversity in Iceland (2001) National Report to the Convention on Biological Diversity. Ministry for the Environment. The Icelandic Institute of Natural History, Reykjavík, pp 1–56

    Google Scholar 

  9. Blasco-Costa I, Faltýnková A, Georgieva S, Skírnisson K, Scholz T, Kostadinova A (2014) Fish pathogens near the Arctic circle: molecular, morphological and ecological evidence for unexpected diversity of Diplostomum (Digenea: Diplostomidae) in Iceland. Int J Parasitol 44:703–715

    PubMed  Google Scholar 

  10. Braun M (1900) Einige Bemerkungen über die Fascioliden der Chiroptera. Zool Anz 23:387–391

    Google Scholar 

  11. Brinkmann A (1952) Fish trematodes from Norwegian waters. I The history of fish trematode investigations in Norway and the Norwegian species of the order Monogenea. Univ Bergen Årb Nat-vitensk rekke nr 1:1–134

    Google Scholar 

  12. Brinkmann A (1956) Trematoda. The zoology of Iceland, vol 2. Ejnar Mungsgaard, Copenhagen and Reykjavík 34 p

    Google Scholar 

  13. Brown FJ (1927) On Crepidostomum farionis O. F. Müll. (= Stephanophiala laureata Zeder), a distome parasite of the trout and grayling. I. the life history. Parasitol 19:86–99

    Google Scholar 

  14. Brown RJ (2007) Freshwater molluscs survive fish gut passage. Arctic 60:124–128

    Google Scholar 

  15. Brunner PC, Douglas MR, Osinov A, Wilson CC, Bernatchez L (2001) Holarctic phylogeography of Arctic charr (Salvelinus alpinus L.) inferred from mitochondrial DNA sequences. Evolution 55:573–586

    CAS  PubMed  Google Scholar 

  16. Busarova OY, Markevich GN, Knudsen R, Esin E (2017) Trophic differentiation of the nosed charr Salvelinus schmidti Viktorovski, 1978 in Lake Kronotskoe (Kamchatka). Russ J Mar Biol 43:57–64

    Google Scholar 

  17. Caira JN (1985) A revision of the North American papillose Allocreadiidae (Digenea) with independent cladistic analyses of larval and adult forms. Bull Univ Nebraska State Mus 11:1–58

    Google Scholar 

  18. Caira JN, Bogéa T (2005) Family Allocreadiidae Looss, 1902. In: Jones A, Bray RA, Gibson DI (eds) Keys to the Trematoda, CABI & Natural History Museum, vol 2. Wallingford, UK, pp 417–436

    Google Scholar 

  19. Campbell RA (2008) Family Gorgoderidae Looss, 1899. In: Bray RA, Gibson DI, Jones A (eds) Keys to the Trematoda, CABI & natural history museum, vol 3. Wallingford, UK, pp 191–213

    Google Scholar 

  20. Clewing C, Bössneck U, von Oheimb PV, Albrecht C (2013) Molecular phylogeny and biogeography of high mountain bivalve fauna: the sphaeriidae of the Tibetan plateau. Malacologia 56:231–252

    Google Scholar 

  21. Crawford WW (1943) Colorado trematode studies. I. A further contribution to the life history of Crepidostomum farionis (Müller). J Parasitol 29:379–384

  22. Cutmore SC, Miller TL, Curran SS, Bennett MB, Cribb TH (2013) Phylogenetic relationships of the Gorgoderidae (Platyhelminthes: Trematoda), including the proposal of a new subfamily (Degeneriinae n. subfam.). Parasitol Res 112:3063–3074

    PubMed  Google Scholar 

  23. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9:772–772

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Davidson R, Simard M, Kutz SJ, Kapel CMO, Hamnes IS, Robertson LJ (2011) Arctic parasitology: why should we care? Trends Parasitol 27:238–244

    Google Scholar 

  25. Dugarov ZN (2000) A distribution of Phyllodistomum umblae and Phyllodistomum folium (Trematoda: Gorgoderidae) in the excretory system of fishes. Parazitologiya 34:66–69 (In Russian)

    Google Scholar 

  26. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32:1792–1797

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Ergens R (1963) Revision of the helminth fauna of fishes from the territory of Czechoslovakia I. Genus Crepidostomum Braun 1900 (Trematoda: Allocreadiidae). Čs Parasitol 10:81–88 (In Czech)

    Google Scholar 

  28. Faltýnková A, Georgieva S, Kostadinova A, Blasco-Costa I, Scholz T, Skírnisson K (2014) Diplostomum von Nordmann, 1832 (Digenea: Diplostomidae) in the sub-Arctic: descriptions of the larval stages of six species discovered recently in Iceland. Syst Parasitol 89:195–213

    PubMed  Google Scholar 

  29. Figuerola J, Green AJ (2002) Dispersal of aquatic organisms by waterbirds: a review of past research and priorities for future studies. Freshw Biol 47:483–494

    Google Scholar 

  30. Filion A, Rainville V, Pépino M, Bertolo A, Magnan P (2019) Alternative host identity and lake morphometry drive trematode transmission in brook charr. Oecologia 190:879–889

    PubMed  Google Scholar 

  31. Frandsen F, Malmquist HJ, Snorasson SS (1989) Ecological parasitology of polymorphic Arctic charr, Salvelinus alpinus (L.), in Thingvallavatn, Iceland. J Fish Biol 34(28):1–297

  32. Froese R, Pauly D (eds) (2019) FishBase. Online publication http: https://www.fishbase.org. Accessed November 2019

  33. Galaktionov K (1996) Life cycles and distribution of seabird helminths in Arctic and sub-Arctic regions. Bull Scand Soc Parasitol 6:31–49

    Google Scholar 

  34. Gardner SL, Campbell ML (1992) Parasites as probes for biodiversity. J Parasitol 78:596–600

    CAS  PubMed  Google Scholar 

  35. Georgieva S, Selbach C, Faltýnková A, Soldánová M, Sures B, Skírnisson K, Kostadinova A (2013) New cryptic species of the ‘revolutum’ group of Echinostoma (Digenea: Echinostomatidae) revealed by molecular and morphological data. Parasit Vectors 6:64

    PubMed  PubMed Central  Google Scholar 

  36. Gibson DI (1996) Trematoda. In: Margolis L, Kabata Z (eds) Guide to the parasites of fishes of Canada, part IV. NRC Research Press, Ottawa, Canada 373 p

    Google Scholar 

  37. Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    CAS  Google Scholar 

  38. Hechinger RF, Lafferty KD (2005) Host diversity begets parasite diversity: bird final hosts and trematodes in snail intermediate hosts. Proc R Soc B 272:1059–1066

    PubMed  Google Scholar 

  39. Hechinger RF, Lafferty KD, Huspeni TC, Brooks AJ, Kuris AM (2007) Can parasites be indicators of free-living diversity? Relationships between species richness and the abundance of larval trematodes and of local benthos and fishes. Oecologia 151:82–92

    PubMed  Google Scholar 

  40. Henriksen EH, Smalås A, Strøm JJ, Knudsen R (2019) The association between parasite infection and growth rates in Arctic charr: do fast growing fish have more parasites? Hydrobiologia 840:261–270

    Google Scholar 

  41. Hopkins SH (1934) The morphology, life histories and relationships of the papillose Allocreadiidae (Trematoda). (Preliminary report.). Zool Anz 103:65–74

    Google Scholar 

  42. Hudson PJ, Dobson AP, Lafferty KD (2006) Is a healthy ecosystem one that is rich in parasites? Trends Ecol Evol 7:381–385

    Google Scholar 

  43. Jeppesen E, Meerhoff M, Homgren K, Gonzáles-Bergonzoni I, Teixeira-de Mello T, Declerc SAJ, De Meester L, Sondergaard M, Lauridsen TL, Bjerring R, Conde-Porcuna JM, Mazzeo N, Iglesias C, Reizenstein J, Malmquist HJ, Liu Z, Balayla D, Lazzaro X (2010) Impact of climate warming on lake fish community structure and potential effect on ecosystem function. Hydrobiologia 646:73–90

    CAS  Google Scholar 

  44. Jouet D, Skírnisson K, Kolářová L, Ferté H (2010) Molecular diversity of Trichobilharzia franki in two intermediate hosts (Radix auricularia and Radix peregra): a complex of species. Infect Genet Evol 10:1218–1227

    CAS  PubMed  Google Scholar 

  45. Kennedy CR (1974) A checklist of British and Irish freshwater fish parasites with notes on their distribution. J Fish Biol 6:613–644

    Google Scholar 

  46. Klementsen A, Amundsen P-A, Dempson JB, Jonsson B, Jonsson N, O’Connell MF, Mortensen E (2003) Atlantic salmon Salmo salar L., brown trout Salmo trutta L. and Arctic charr Salvelinus alpinus (L.): a review of aspects of their life histories. Ecol Freshw Fish 12:1–59

    Google Scholar 

  47. Kristmundsson Á, Richter SH (2009) Parasites of resident Arctic charr, Salvelinus alpinus, and brown trout, Salmo trutta, in two lakes in Iceland. Icel Agric Sci 22:5–18

    Google Scholar 

  48. Kristmundsson Á, Antonsson T, Árnason F (2010) First record of proliferative kidney disease in Iceland. Bull. Eur Ass Fish Pathol 30:35–40

    Google Scholar 

  49. Kuchta R, Caira JN (2010) Three new species of Echinobothrium (Cestoda: Diphyllidea) from Indo-Pacific stingrays of the genus Pastinachus (Rajiformes: Dasyatidae). Folia Parasitol 57:185–196

    PubMed  Google Scholar 

  50. Kuhn JA, Knudsen R, Kristoffersen R, Primicerio R, Amundsen P-A (2016) Temporal changes and between-host variation in the intestinal parasite community of Arctic charr in a subarctic lake. Hydrobiologia 783:79–91

    Google Scholar 

  51. Kulish AV, Galkin VV (2015) Ichthyofauna of the River Burulcha. Proceedings of the 9th International research-and-practical conference of the young scientists devoted to the problem of water ecosystems “Pontus Euxinus – 2015”, Sevastopol, November 17–20, pp 90–91 (In Russian)

  52. Kuris AM, Hechinger RF, Shaw JC, Whitney KL, Aquirre-Macedo L, Boch CA, Dobson AP, Dunham EJ, Fredensborg BL, Huspeni TC, Lorda J, Mabab L, Mancini FT, Mora AB, Pickering M, Talhouk NL, Torchin ME, Lafferty KD (2008) Ecosystem energetic implications of parasite and free-living biomass in three estuaries. Nature 454:515–518

    CAS  PubMed  Google Scholar 

  53. Kutz SJ, Hoberg EP, Polley L, Jenkins EJ (2005) Global warming is changing the dynamics of Arctic host-parasite systems. Proc R Soc B-Biol Sci 272:2571–2576

    CAS  Google Scholar 

  54. Lindegaard C (1979) The invertebrate fauna of Lake Mývatn, Iceland. Oikos 32:151–161

    Google Scholar 

  55. Littlewood DT, Rohde K, Clough KA (1997) Parasite speciation within or between host species? – phylogenetic evidence from site-specific polystome monogeneans. Int J Parasitol 27:1289–1297

    CAS  PubMed  Google Scholar 

  56. Littlewood DT, Curini-Galletti M, Herniou EA (2000) The interrelationships of Proseriata (Platyhelminthes: Seriata) tested with molecules and morphology. Mol Phylogenet Evol 16:449–466

    CAS  PubMed  Google Scholar 

  57. Mackie GL (1979) Dispersal mechanisms in Sphaeriidae (Mollusca: Bivalvia). Bull Am Malacol Union 45:17–21

    Google Scholar 

  58. Marcogliese DJ, Cone DK (1997) Food webs: a plea for parasites. Trends Ecol Evol 12:320–325

    CAS  PubMed  Google Scholar 

  59. Miller MA, Pfeiffer W, Schwartz T (2010) Creating the CIPRES Science Gateway for inference of large phylogenetic trees. In: Gateway Computing Environments Workshop (GCE). IEEE, pp 1–8

  60. Moravec F (2002) External morphological differences between Crepidostomum farionis and Crepidostomum metoecus (Trematoda: Allocreadiidae), parasites of salmonids, as revealed by SEM. Folia Parasitol 49:211–217

    PubMed  Google Scholar 

  61. Mouritsen KN, Sorensen MM, Poulin R, Fredensborg BL (2018) Coastal ecosystems on a tipping point: global warming and parasitism combine to alter community structure and function. Glob Chang Biol 24:4340–4356

    PubMed  Google Scholar 

  62. Müller OK (1784) Zoologia Danica, seu Animalium Daniae et Norvegiae rariorum ac minus torum descriptions et historia, Volumen secundum. Bipliopolio JG Muelleriano, Leipzig, p 124

    Google Scholar 

  63. Niewiadomska K (2003) Pasożyty ryb Polski. Klucze do oznaczania Przywry – Digenea Polskie Towarzystwo Parazytologiczne, Warszawa pp 169 (In Polish)

  64. Nilsson C, Polvi LE, Lind L (2015) Extreme events in streams and rivers in arctic and subarctic regions in an uncertain future. Freshw Biol 60:2535–2546

    Google Scholar 

  65. Nybelin O (1926) Zur Helminthenfauna der Süsswasserfische Schwedens. I. Phyllodistomen. Goteborgs K. Vetensk. Vitterh Samh Handl 31:1–29

    Google Scholar 

  66. Olsson P (1876) Bidrag till Skandinaviens Helminthfauna. I-K svenska Vetensk Akad Handl 14:1–35

    Google Scholar 

  67. Parmesan C, Yohe G (2003) A globally coherent fingerprint of climate change impacts across natural systems. Nature 42:37–42

    Google Scholar 

  68. Petkevičiūtė R, Kudlai O, Stunžėnas V, Stanevičiūtė G (2015a) Molecular and karyological identification and morphological description of cystocercous cercariae of Phyllodistomum umblae and Phyllodistomum folium (Digenea, Gorgoderidae) developing in European sphaeriid bivalves. Parasitol Int 64:441–447

    PubMed  Google Scholar 

  69. Petkevičiūtė R, Stunžėnas V, Stanevičiūtė G, Zhokhov AE (2015b) European Phyllodistomum (Digenea, Gorgoderidae) and phylogenetic affinities of Cercaria duplicata based on rDNA and karyotypes. Zool Scr 44:191–202

    Google Scholar 

  70. Petkevičiūtė R, Stunžėnas V, Zhokhov AE, Poddubnaya LG, Stanevičiūtė G (2018) Diversity and phylogenetic relationships of European species of Crepidostomum Braun, 1900 (Trematoda: Allocreadiidae) based on rDNA, with special reference to Crepidostomum oschmarini Zhokhov & Pugacheva, 1998. Parasit Vectors 11:530

    PubMed  PubMed Central  Google Scholar 

  71. Pigulevsky SW (1953) Family Gorgoderidae Looss, 1901. In: Skrjabin KI (ed) Trematodes of Animals and Man. Essentials in Trematodology, vol 8. Nauka, Moscow, pp 253–615 (In Russian)

    Google Scholar 

  72. Pleijel F, Jondelius U, Norlinder E, Nygren,A, Oxelman B, Schander C, Sundberg P, Thollesson M (2008) Phylogenies without roots? A plea for the use of vouchers in molecular phylogenetic studies. Mol Phylogenet Evol 48:369–371

  73. Rahkonen R, Valtonen ET (1987) Occurrence of Phyllodistomum umblae (Fabricius, 1780) in the ureters of coregonids of lake Yli-Kitka in Northeastern Finland. Folia Parasitol 34:145–155

    CAS  PubMed  Google Scholar 

  74. Rambaut A (2012) FigTree v1. 4. Molecular evolution, phylogenetics and epidemiology. University of Edinburgh, Institute of Evolutionary Biology, Edinburgh, UK http://tree.bio.ed.ac.uk/software/figtree. Accessed 26 November 2016

  75. Rambaut A, Suchard M, Xie W, Drummond A (2014) Tracer v. 1.6. University of Edinburgh, Institute of Evolutionary Biology, Edinburgh https://beast.bio.ed.ac.uk/Tracer. Accessed 26 Nov 2016

  76. Rolls RJ, Hayden B, Kahialinen KK (2017) Conceptualising the interactive effects of climate change and biological invasions on subarctic freshwater fish. Ecol Evol 7:4109–4128

    PubMed  PubMed Central  Google Scholar 

  77. Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Huelsenbeck JP (2012) MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    PubMed  PubMed Central  Google Scholar 

  78. Skrjabin KI, Koval VP (1966) Family Bunoderidae Nicoll, 1914. In: Skrjabin KI (ed) Trematodes of animals and man, Essentials of Trematodology, vol 22. Nauka, Moscow, pp 313–456 (In Russian)

  79. Slusarski W (1958) The adult Digenea from Salmonidae of the basin of the Vistula and of the South Baltic. Acta Parasitol Pol 6:247–528

    Google Scholar 

  80. Soldánová M, Georgieva S, Roháčová J, Knudsen R, Kuhn JA, Henriksen EH, Siwertsson A, Shaw JC, Kuris AM, Amundsen P-A, Scholz T, Lafferty KD, Kostadinova A (2017) Molecular analyses reveal high species diversity of trematodes in a sub-Arctic lake. Int J Parasitol 47:327–345

    PubMed  Google Scholar 

  81. Tkach VV, Curran SS, Bell JA, Overstreet R (2013) A new species of Crepidostomum (Digenea: Allocreadiidae) from Hiodon tergisus in Mississippi and molecular comparison with three congeners. J Parasitol 99:1114–1121

    PubMed  Google Scholar 

  82. Wada S, Kawakami K, Chiba S (2012) Snails can survive passage through a bird’s digestive system. J Biogeogr 39:69–73

    Google Scholar 

  83. Werle E, Schneider C, Volker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res 22:4354–4355

    CAS  PubMed  PubMed Central  Google Scholar 

  84. Wilson AJ, Gíslason D, Skúlason S, Snorason SS, Adams CE, Alexander G, Danzmann RG, Ferguson MM (2004) Population genetic structure of Arctic charr, Salvelinus alpinus from northwest Europe on large and small spatial scales. Mol Ecol 13:1129–1142

    CAS  PubMed  Google Scholar 

  85. Wood CL, Byers JE, Cottingham KL, Altman I, Donahue MJ, Blakeslee AMH (2007) Parasites alter community structure. Proc Natl Acad Sci U S A 104:9335–9339

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We are deeply indebted to Guðni Guðbergsson (Marine and Freshwater Research Institute, Iceland) and Gylfi Yngvason (Skútustadir) and Jóhannes Sveinbjörnsson (Heiðabær) for providing fish for us. We thank Blanka Škoríková (Institute of Parasitology, Biology Centre of the Czech Academy of Sciences) for her help with illustrations.

Funding

The present study was funded by the Czech Grant Agency (project No. 18-18597S), by the institutional support of the Institute of Parasitology, BC CAS CR (585110/9500), and by the Research fund of the University of Iceland.

Author information

Affiliations

Authors

Corresponding author

Correspondence to A. Faltýnková.

Ethics declarations

All applicable international, national and/or institutional guidelines for the care and use of animals were followed.

Conflict of interest

The authors declare that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Section Editor: Simonetta Mattiucci

Electronic supplementary material

ESM 1

(DOCX 28 kb)

ESM 2

(DOCX 1905 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Faltýnková, A., Pantoja, C., Skírnisson, K. et al. Unexpected diversity in northern Europe: trematodes from salmonid fishes in Iceland with two new species of Crepidostomum Braun, 1900. Parasitol Res 119, 2439–2462 (2020). https://doi.org/10.1007/s00436-020-06724-1

Download citation

Keywords

  • Allocreadiidae
  • Gorgoderidae
  • Morphology
  • Nuclear DNA
  • Sub-Arctic