Skip to main content

Advertisement

Log in

The anticoccidial activity of the fluoroquinolone lomefloxacin against experimental Eimeria tenella infection in broiler chickens

  • Treatment and Prophylaxis - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Coccidiosis is a crucial parasitic disease of the poultry industry. As a result of the enormous global economic losses and the increased resistance to the conventional anticoccidial agents, there is a continuous need to find new anticoccidials. Here, the anticoccidial effect of the fluoroquinolone lomefloxacin versus diclazuril in experimentally infected broilers was tested for the treatment of Eimeria tenella infection. Ninety 14-day-old Cobb strain broiler chickens were allocated into five groups, each with 18 chicks. Group 1 (G1) was separated as an uninfected negative control and received no treatment; group 2 (G2), infected untreated (positive control); group 3 (G3), infected and treated with lomefloxacin at a dose rate of 100 ppm in drinking water; group 4 (G4), infected and treated with diclazuril at a dose rate of 2.5 ppm in drinking water; group 5 (G5), infected and treated with lomefloxacin at a dose rate of 100 ppm plus diclazuril at dose rate of 2.5 ppm in drinking water. Clinical signs, mortality rates, number of oocysts per gram of faeces (OPG), growth performance parameters (weight gain: WG and feed conversion ratio: FCR), lesion scoring, haematological and serum biochemical analyses, antioxidant biomarkers and histopathologic inspection of the caeca were used as evaluation criteria for the anticoccidial efficacy of both lomefloxacin and diclazuril. The findings herein showed that administration of lomefloxacin and/or diclazuril improved growth performance parameters (WG, FCR) and significantly (P ≤ 0.05) reduced OPG, and diminished the severity of bloody diarrhoea and mortalities. Additionally, haematological indices and serum biochemical parameters such as ALT, AST, ALP, creatinine, uric acid, total proteins, albumin and globulin were improved. Finally, a significant elevation in the levels of the antioxidant biomarkers was observed in the chicks of G3, G4 and G5 as compared with those of G2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Adamu M, Boonkaewwan C, Gongruttananun N, Vongpakorn M (2013) Hematological, biochemical and histopathological changes caused by coccidiosis in chickens. Kasetsart J 47:238–246

    CAS  Google Scholar 

  • Allen PC, Fetterer RH (2002) Recent advances in biology and immunobiology of Eimeria species and in diagnosis and control of infection with these coccidian parasites of poultry. Clin Microbiol Rev 15(1):58–65

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Alnassan AA, Shehata AA, Kotsch M, Schrödl W, Krüger M, Daugschies A, Bangoura B (2013) Efficacy of early treatment with toltrazuril in prevention of coccidiosis and necrotic enteritis in chickens. Avian Pathol 42:482–490

    Article  CAS  PubMed  Google Scholar 

  • Al-Taee MNK, Al-Zubaidi MTS (2017) Protection against Emeria stiedae in rabbits by using sonicated sporulated oocyst vaccine. J Entomol Zool Stud 5:579–585

    Google Scholar 

  • Anquetin G, Farhati K, Rouquayrol M, Mahmoudi N, Santillana-Hayat M, Gozalbes R, Derouin F, Guedja R, Vierlinga P (2004) Synthesis of new fluoroquinolones and evaluation of their in vitro activity on Toxoplasma gondii and Plasmodium spp. Bioorg Med Chem Lett 14:2773–2776

    Article  CAS  PubMed  Google Scholar 

  • Arab HA, Rahbari S, Rassouli A, Moslemi MH, Khosravirad F (2006) Determination of artemisinin in Artemisia sieberi and anticoccidial effects of the plant extracts in broiler chickens. Trop Anim Health Prod 38:497–503

    Article  CAS  PubMed  Google Scholar 

  • Arisue N, Hashimoto T (2015) Phylogeny and evolution of apicoplasts and apicomplexan parasites. Parasitol Int 64(3):254–259

    Article  PubMed  Google Scholar 

  • Bancraft JD, Stevens A, Turner DR (1990) Theory and practice of histological techniques, 3rd edn. Churchill Livingstone, London

    Google Scholar 

  • Brander G, Pugh D, Bywater R, Jenkins W (1991) Veterinary applied pharmacology and therapeutics, 5th edn, London

  • Cam Y, Atasever A, Eraslan G, Kibar M, Atalay O, Beyaz L, Inci A, Liman BC (2008) Eimeria stiedae: experimental infection in rabbits and the effect of treatment with toltrazuril and ivermectin. Exp Parasitol 119:164–172

    Article  CAS  PubMed  Google Scholar 

  • Chapman HD (1997) Biochemical, genetic and applied aspects of drug resistance in Eimeria parasites of the fowl. Avian Pathol 26:221–244

    Article  CAS  PubMed  Google Scholar 

  • Chapman HD (2018) Applied strategies for the control of coccidiosis in poultry. CAB Rev 13:1–11

    Article  Google Scholar 

  • Chapman HD, Shirley MW (2003) The Houghton strain of Eimeria tenella: a review of the type strain selected for genome sequencing. Avian Pathol:115–127. https://doi.org/10.1080/0307945021000071588

    Article  CAS  PubMed  Google Scholar 

  • Chauhan RS, Chandra D (2007) Veterinary laboratory diagnosis, 2nd edn. International book distributing co, India

    Google Scholar 

  • Chin PTV, Stults FH, Tapell AP (1976) Purification of rat lung soluble glutathione peroxidase. Biochem Biophys Acta 445:558–666

    Google Scholar 

  • Cooper KK, Songer JG (2009) Necrotic enteritis in chickens: a paradigm of enteric infection by Clostridium perfringens type A. Anaerobe 15:55–60

    Article  PubMed  Google Scholar 

  • Costantini D, Møller AP (2009) Does immune response cause oxidative stress in birds? A meta-analysis. Comp Biochem Phys A 153(3):339–344. https://doi.org/10.1016/j.cbpa.2009.03.010

    Article  CAS  Google Scholar 

  • De Pablos LM, dos Santos MF, Montero E, Garcia-Granados A, Parra A, Osuna A (2010) Anticoccidial activity of maslinic acid against infection with Eimeria tenella in chickens. Parasitol Res 107:601–604

    Article  PubMed  Google Scholar 

  • Divo AA, Sartorelli AC, Patton CL, Bia FJ (1988) Activity of fluoroquinolone antibiotics against Plasmodium falciparum in vitro. Antimicrob Agents Chemother 32:1182–1186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Domas BL (1975) Colorimetric determination of total protein. Clin Chem 21(1):159–166

    Google Scholar 

  • Fichera M, Roos D (1997) A plastid organelle as a drug target in apicomplexan parasites. Nature 390: 407–409 https:// doi: https://doi.org/10.1038/37132

    Article  CAS  PubMed  Google Scholar 

  • Fischer J n, Ganellin CR (2006) Analogue-based drug discovery. Wiley, USA

    Book  Google Scholar 

  • Georgieva NV, Koinarski V, Gadjeva V (2006) Antioxidant status during the course of Eimeria tenella infection in broiler chickens. Vet J 172:488–492

    Article  CAS  PubMed  Google Scholar 

  • Gozalbes R, Brun-Pascaud M, Garcia-Domenech R, Galvez J, Girard PM, Doucet JP, Derouin F (2000) Anti-Toxoplasma activities of 24 quinolones and fluoroquinolones in vitro: prediction of activity by molecular topology and virtual computational techniques. Antimicrob Agents Chemother 44:2764–2770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Haisman P, Muller BP (1977) Glossary of clinical chemistry and terms. Butter worth, London

    Google Scholar 

  • Henry RJ (1974) Clinical chemistry, principles and techniques, 2nd edn. Raw, Harper and

    Google Scholar 

  • Huang G, Tang X, Bi F, Hao Z, Han Z, Suo J, Yu F (2018) Eimeria tenella infection perturbs the chicken gut microbiota from the onset of oocyst shedding. Vet Parasitol 258:213–232

    Google Scholar 

  • Irizaary-Rovira AR (2004) Avian and reptilian clinical pathology (avian hematology and biochemical analysis). In: RL Cowell (ed) veterinary clinical pathology secrets. Elsevier Inc, St. Louis, pp 282–313

    Chapter  Google Scholar 

  • Jang SI, Jun MH, Lillehoj HS, Dallour RA, Kong IK, Kim S, Min W (2007) Anticoccidial effect of green tea-based diets against Eimeria maxima. Vet Parasitol 144:172–175

    Article  CAS  PubMed  Google Scholar 

  • Johnson JK, Reid WM (1970) Anticoccidial drugs: lesion scoring techniques in battery and floor pen experiments with chickens. Exp Parasitol 28:30–36

    Article  CAS  PubMed  Google Scholar 

  • Levine N (1988) The protozoan phylum Apicomplexa. CRC Press. Inc., Boca Raton

    Google Scholar 

  • Long PL, Rowell JG (1958) Counting oocysts of chicken coccidia. Lab Pract 7:515–518

    Google Scholar 

  • López-Bernad F, Del Cacho E, Gallego M, Quílez J, Sánchez-Acedo C (1998) Immunohistochemical identification of the cells parasitized by second-generation schizonts of Eimeria tenella. Parasitol Res 84(2):132–135

    Article  PubMed  Google Scholar 

  • Matsuno T, Kobayashi N, Hariguchi F, Okamoto T, Okada Y, Hayahsi T (1996) Investigation for the characteristic anticoccidial activity of diclazuril in battery trials. J Vet Med Sci 58:129–133

    Article  CAS  PubMed  Google Scholar 

  • Nishikimi M, Rao NA, Yog K (1972) Colorimetric determination of superoxide dismutase activity. Biochem Biophys Res Commun 46:849–851

    Article  CAS  PubMed  Google Scholar 

  • Noack S, Chapman HD, Selzer PM (2019) Anticoccidial drugs of the livestock industry. Parasitol Res 118:2009–2026. https://doi.org/10.1007/s00436-019-06343-5

    Article  PubMed  PubMed Central  Google Scholar 

  • Pakandl M (2009) Coccidia in rabbit: a review. Folia Parasit 2009(56):153–166

    Article  Google Scholar 

  • Piddock LJV, Hall MC, Wise R (1990) Mechanism of action of lomefloxacin. Antimicrob Agents Chemother 34:1088–1093 https://doi.org/10.1128/aac.34.6.1088

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pop L, Györke A, Tǎbǎran AF, Dumitrache MO, Kalmár Z, Magdaş C, Mircean V, Zagon D, Balea A, Cozma V (2015) Effects of artemisinin in broiler chickens challenged with Eimeria acervulina, E. maxima and E. tenella in battery trials. Vet Parasitol 214(3–4):264–271. https://doi.org/10.1016/j.vetpar.2015.10.011

    Article  CAS  PubMed  Google Scholar 

  • Rajman M, Jurani M, Lamosova D, Macajova M, Sedlackova M, Kostal L, Jesova D, Vyboh P (2006) The effects of feed restriction on plasma biochemistry in growing meat type chickens (Gallus gallus). Comp Biochem Phys 145:363–371

    Article  CAS  Google Scholar 

  • Roos DS, Crawford MJ, Donald RGK, Kissinger JC, Klimczak LJ, Striepen B (1999) Origin, targeting, and function of the apicomplexan plastid. Curr Opin Microbiol 2:426–432

    Article  CAS  PubMed  Google Scholar 

  • Rubinstein E (2001) History of quinolones and their side effects. Chemotherapy 47:3–8

    Article  CAS  PubMed  Google Scholar 

  • Sato S (2011) The apicomplexan plastid and its evolution. Cell Mol Life Sci 381:1285–1296

    Article  CAS  Google Scholar 

  • Seddiek SA, Mobarak MMA, Metwaly AM (2008) Potentiation of salinomycin anticoccidial effect with butylated hydroxy toluene (BHT) in broilers. Suez Canal Vet Med J 2:241–258

    Google Scholar 

  • Sinha KA (1987) Colorimetric assay of catalase. Anal Biochem 47:389–394

    Article  Google Scholar 

  • Suto MJ, Domagala JM, Roland GE, Mailloux GB, Cohen MA (1992) Fluoroquinolones: relationships between structural variations, mammalian cell cytotoxicity and antimicrobial activity. J Med Chem 35:4746–4760

    Article  Google Scholar 

  • Thirunavukkarasu V, Balakrishnan SD, Ravichandran MK, Anuradha CV (2003) Influence of 6-week exercise training on erythrocyte and liver antioxidant defense in hyper insulinemic rats. Comp Biochem Phys C 135:31–37

    CAS  Google Scholar 

  • Toso MA, Omoto CK (2007) Gregarina niphandrodes may lack both a plastid genome and organelle. J Eukaryot Microbiol 54:66–72

    Article  CAS  PubMed  Google Scholar 

  • Van Immerseel F, De Buck J, Pasmans F, Huyghebaert G, Haesebrouck F, Ducatelle R (2004) Clostridium perfringens in poultry: an emerging threat for animal and public health. Avian Pathol 33:537–549

    Article  PubMed  Google Scholar 

  • Varliy H (1974) Clinical chemistry methodology, past and present. Ann Clin Biochem 11:161–163

    Article  Google Scholar 

  • Verheyen A, Maes L, Coussement W, Vanparijs O, Lauwers F, Vlaminckx E, Borgers M, Marsboom R (1988) In vivo action of the anticoccidial diclazuril (Clinacox) on the developmental stages of Eimeria tenella: an ultrastructural evaluation. J Parasitol 74(6):939–949

    Article  CAS  PubMed  Google Scholar 

  • Williams RB (2002) Fifty years of anticoccidial vaccines for poultry (1952–2002). Avian Dis 46:775–802

    Article  CAS  PubMed  Google Scholar 

  • Williams RB (2005) Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol 34(3):159–180. https://doi.org/10.1080/03079450500112195

    Article  CAS  PubMed  Google Scholar 

  • Williams RB, Marshall RN, Pagés M, Dardi M, Del Cacho E (2009) Pathogenesis of Eimeria praecox in chickens: virulence of field strains compared with laboratory strains of E. praecox and Eimeria acervulina. Avian Pathol 38(5):359–366

    Article  CAS  PubMed  Google Scholar 

  • Yun CH, Lillehoj HS, Lillehoj EP (2000) Intestinal immune responses to coccidiosis. Dev Comp Immunol 24:303–324

    Article  CAS  PubMed  Google Scholar 

  • Zhou BH, Wang HW, Zhao ZS, Liu M, Yan WC, Zhao J, Zhang Z, Xue FQ (2013) A novel serine/threonine protein phosphatase type 5 from second-generation merozoite of Eimeria tenella is associated with diclazuril-induced apoptosis. Parasitol Res 112(4):1771–1780

    Article  PubMed  Google Scholar 

  • Zhou BH, Wang HW, Wang XY, Zhang LF, Zhang KY, Xue FQ (2010) Eimeria tenella: effects of diclazuril treatment on microneme genes expression in second-generation merozoites and pathological changes of caeca in parasitized chickens. Exp Parasitol 125(3):264–270

    Article  CAS  PubMed  Google Scholar 

  • Zhu G, Marchewka MJ, Keithly JS (2000) Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146:315–321

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Ahmed El-Morsey designed and conceptualized the study, analyzed data and wrote the manuscript; Kamal Ahmed El-Shazly, Amera Abd El-Latif, Walied Abdo, Heba El-Mogazy and Magdy Ibrahim Abd El-Aziz assisted in design, performed the experiment and analyzed the biochemical and haematlogical assayes, histopathological investigations and Statistical analyses. Ahmed El-Morsey and Walied Abdo performed and helped assesment of histopathological changes associated with the Eimeria tenella infection. All authors read and approved the final version of the manuscript.

Corresponding author

Correspondence to Ahmed El-Morsey.

Ethics declarations

The examined animals were handled according to the regulatory laws and ethical considerations approved by the Medical Research Ethics Committee (MREC) of the National Research Centre (NRC), Egypt for the use of experimental animals (No: 1281/2018; 10-23-2018).

Conflict of interest

The authors declare that they have no conflicts of interest.

Additional information

Section Editor: Berit Bangoura

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

El-Shazly, K.A., El-Latif, A.A., Abdo, W. et al. The anticoccidial activity of the fluoroquinolone lomefloxacin against experimental Eimeria tenella infection in broiler chickens. Parasitol Res 119, 1955–1968 (2020). https://doi.org/10.1007/s00436-020-06692-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06692-6

Keywords

Navigation