Skip to main content

Association between louse abundance and MHC II supertypes in Galápagos mockingbirds

Abstract

Major histocompatibility complex class II (MHC II) is an essential molecule triggering the adaptive immune response by the presentation of pathogens to helper T cells. The association between individual MHC II variants and various parasites has become a frequent finding in studies of vertebrate populations. However, although bird ectoparasites have a significant effect on their host’s fitness, and the host’s immune system can regulate ectoparasitic infections, no study has yet investigated the association between MHC II polymorphism and ectoparasite infection in the populations of free-living birds. Here, we test whether an association exists between the abundance of a chewing louse (Myrsidea nesomimi) and MHC II polymorphism of its hosts, the Galápagos mockingbirds (Mimus). We have found that the presence of two MHC II supertypes (functionally differentiated clusters) was significantly associated with louse abundance. This pattern supports the theory that a co-evolutionary interaction stands behind the maintenance of MHC polymorphism. Moreover, we have found a positive correlation between louse abundance and heterophil/lymphocyte ratio (an indicator of immunological stress) that serves as an additional piece of evidence that ectoparasite burden is affected by immunological state of Galápagos mockingbirds.

This is a preview of subscription content, access via your institution.

Fig. 1

Data availability

The dataset generated during the current study is available in the Mendeley Data repository, https://data.mendeley.com/datasets/75rn24pbvz/1

References

  1. Aguilar A, Roemer G, Debenham S, Binns M, Garcelon D, Wayne RK (2004) High MHC diversity maintained by balancing selection in an otherwise genetically monomorphic mammal. Proc Natl Acad Sci U S A 101:3490–3494. https://doi.org/10.1073/pnas.0306582101

    Article  PubMed  PubMed Central  Google Scholar 

  2. Apanius V, Penn D, Slev PR et al (1997) The nature of selection on the major histocompatibility complex. Crit Rev Immunol 17:179–224. https://doi.org/10.1615/CritRevImmunol.v17.i2.40

    CAS  Article  PubMed  Google Scholar 

  3. Bates D, Maechler M, Bolker B et al (2015) Fitting linear mixed-effects models using {lme4}. J Stat Softw 67:1–48. https://doi.org/10.18637/jss.v067.i01

    Article  Google Scholar 

  4. Bateson ZW, Hammerly SC, Johnson JA, Morrow ME, Whittingham LA, Dunn PO (2016) Specific alleles at immune genes, rather than genome-wide heterozygosity, are related to immunity and survival in the critically endangered Attwater’s prairie-chicken. Mol Ecol 25:4730–4744. https://doi.org/10.1111/mec.13793

    CAS  Article  PubMed  Google Scholar 

  5. Bollmer JL, Dunn PO, Whittingham LA, Wimpee C (2010) Extensive MHC class II B gene duplication in a passerine, the common yellowthroat (Geothlypis trichas). J Hered 101:448–460. https://doi.org/10.1093/jhered/esq018

    CAS  Article  PubMed  Google Scholar 

  6. Bolnick DI, Snowberg LK, Caporaso JG et al (2014) Major histocompatibility complex class IIb polymorphism influences gut microbiota composition and diversity. Mol Ecol 23:4831–4845. https://doi.org/10.1111/mec.12846

    CAS  Article  PubMed  Google Scholar 

  7. Buczek M, Okarma H, Demiaszkiewicz AW, Radwan J (2016) MHC, parasites and antler development in red deer: no support for the Hamilton & Zuk hypothesis. J Evol Biol 29:617–632. https://doi.org/10.1111/jeb.12811

    CAS  Article  PubMed  Google Scholar 

  8. Clayton DH, Bush SE, Johnson KP (2015) Coevolution of life on hosts. University of Chicago Press, Chicago

    Book  Google Scholar 

  9. Cohen J (1988) Statistical power analysis for the behavioral sciences. Lawrence Erlbaum Associates, New York

    Google Scholar 

  10. Cohen S, Greenwood MT, Fowler JA (1991) The louse Trinoton anserinum (Amblycera: Phthiraptera), an intermediate host of Sarconema eurycerca (Filarioidea: Nematoda), a heartworm of swans. Med Vet Entomol 5:101–110. https://doi.org/10.1111/j.1365-2915.1991.tb00527.x

    CAS  Article  PubMed  Google Scholar 

  11. Davis AK, Cook KC, Altizer S (2004) Leukocyte profiles in wild house finches with and without mycoplasmal conjunctivitis, a recently emerged bacterial disease. EcoHealth 1:362–373. https://doi.org/10.1007/s10393-004-0134-2

    Article  Google Scholar 

  12. Davis AK, Maney DL, Maerz JC (2008) The use of leukocyte profiles to measure stress in vertebrates: a review for ecologists. Funct Ecol 22:760–772. https://doi.org/10.1111/j.1365-2435.2008.01467.x

    Article  Google Scholar 

  13. Deem SL, Parker PG, Cruz MB et al (2011) Comparison of blood values and health status of Floreana mockingbirds (Mimus trifasciatus) on the islands of Champion and Gardner-by-Floreana, Galápagos Islands. J Wildl Dis 47:94–106. https://doi.org/10.7589/0090-3558-47.1.94

    Article  PubMed  Google Scholar 

  14. Doherty PC, Zinkernagel RM (1975) Enhanced immunological surveillance in mice heterozygous at the H-2 gene complex. Nature 256:50–52. https://doi.org/10.1038/256050a0

    CAS  Article  PubMed  Google Scholar 

  15. Doytchinova IA, Flower DR (2005) In silico identification of supertypes for class II MHCs. J Immunol 174:7085–7095. https://doi.org/10.4049/jimmunol.174.11.7085

    CAS  Article  PubMed  Google Scholar 

  16. Dunn PO, Bollmer JL, Freeman-Gallant CR, Whittingham LA (2013) MHC variation is related to a sexually selected ornament, survival, and parasite resistance in common yellowthroats. Evolution 67:679–687. https://doi.org/10.1111/j.1558-5646.2012.01799.x

    CAS  Article  PubMed  Google Scholar 

  17. Ejsmond MJ, Radwan J (2015) Red queen processes drive positive selection on major histocompatibility complex (MHC) genes. PLoS Comput Biol 11:e1004627. https://doi.org/10.1371/journal.pcbi.1004627

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  18. Fairn ER, McLellan NR, Shutler D (2012) Are lice associated with ring-billed gull chick immune responses? Waterbirds 35:164–169. https://doi.org/10.1675/063.035.0118

    Article  Google Scholar 

  19. Haribal M, Dhondt AA, Rosane D, Rodriguez E (2005) Chemistry of preen gland secretions of passerines: different pathways to same goal? Why? Chemoecology 15:251–260. https://doi.org/10.1007/s00049-005-0318-4

    CAS  Article  Google Scholar 

  20. Hoeck PEA, Keller LF (2012) Inbreeding, immune defence and ectoparasite load in different mockingbird populations and species in the Galápagos Islands. J Avian Biol 43:423–434. https://doi.org/10.1111/j.1600-048X.2012.05725.x

    Article  Google Scholar 

  21. Hoeck PEA, Bucher TB, Wandeler P, Keller LF (2009) Microsatellite primers for the four Galápagos mockingbird species (Mimus parvulus, Mimus macdonaldi, Mimus melanotis and Mimus trifasciatus). Mol Ecol Resour 9:1538–1541. https://doi.org/10.1111/j.1755-0998.2009.02704.x

    CAS  Article  PubMed  Google Scholar 

  22. Hoeck PEA, Bollmer JL, Parker PG, Keller LF (2010) Differentiation with drift: a spatio-temporal genetic analysis of Galapagos mockingbird populations (Mimus spp.). Philos Trans R Soc Lond Ser B Biol Sci 365:1127–1138. https://doi.org/10.1098/rstb.2009.0311

    Article  Google Scholar 

  23. Hoi H, Krištofík J, Darolová A, Hoi C (2012) Experimental evidence for costs due to chewing lice in the European bee-eater (Merops apiaster). Parasitology 139:53–59. https://doi.org/10.1017/S0031182011001727

    CAS  Article  PubMed  Google Scholar 

  24. Jacob J, Ziswiler W (1982) Avian biology: the uropygial gland. Academic Press, New York

    Google Scholar 

  25. Jacob S, Immer A, Leclaire S, Parthuisot N, Ducamp C, Espinasse G, Heeb P (2014) Uropygial gland size and composition varies according to experimentally modified microbiome in great tits. BMC Evol Biol 14:134–111. https://doi.org/10.1186/1471-2148-14-134

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  26. James PJ (1999) Do sheep regulate the size of their mallophagan louse populations? Int J Parasitol 29:869–875. https://doi.org/10.1016/S0020-7519(99)00055-7

    CAS  Article  PubMed  Google Scholar 

  27. Kellogg VL, Kuawana SI (1902) Papers from the Hopkins Stanford Galapagos Expedition, 1898–1899. X. Entomological results (8). Mallophaga from birds. Proc Wash Acad Sci 4:457–499

    Google Scholar 

  28. King MO, Owen JP, Schwabl H (2011) Injecting the mite into ecological immunology: measuring the antibody response of house sparrows (Passer domesticus) challenged with hematophagous mites. Auk 128:340–345. https://doi.org/10.1525/auk.2011.10253

    Article  Google Scholar 

  29. Klein J, Sato A, Nikolaidis N (2007) MHC, TSP, and the origin of species: from immunogenetics to evolutionary genetics. Annu Rev Genet 41:281–304. https://doi.org/10.1146/annurev.genet.41.110306.130137

    CAS  Article  PubMed  Google Scholar 

  30. Koop JAH, Clayton DH (2013) Evaluation of two methods for quantifying passeriform lice. J Field Ornithol 84:210–215. https://doi.org/10.1111/jofo.12020

    Article  PubMed  Google Scholar 

  31. Leclaire S, van Dongen WFD, Voccia S, Merkling T, Ducamp C, Hatch SA, Blanchard P, Danchin É, Wagner RH (2015) Preen secretions encode information on MHC similarity in certain sex-dyads in a monogamous seabird. Sci Rep 4:6920–6926. https://doi.org/10.1038/srep06920

    CAS  Article  Google Scholar 

  32. Leclaire S, Strandh M, Dell’Ariccia G et al (2019) Plumage microbiota covaries with the major histocompatibility complex in blue petrels. Mol Ecol 28:833–846. https://doi.org/10.1111/mec.14993

    Article  PubMed  Google Scholar 

  33. Lehmann T (1993) Ectoparasites: direct impact on host fitness. Parasitol Today 9:13–17. https://doi.org/10.1016/0169-4758(93)90154-8

    Article  Google Scholar 

  34. Lighten J, Papadopulos AST, Mohammed RS, Ward BJ, Paterson I, Baillie L, Bradbury IR, Hendry AP, Bentzen P, van Oosterhout C (2017) Evolutionary genetics of immunological supertypes reveals two faces of the Red Queen. Nat Commun 8:1294–1211. https://doi.org/10.1038/s41467-017-01183-2

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  35. Manly KF (2005) Reliability of statistical associations between genes and disease. Immunogenetics 57:549–558. https://doi.org/10.1007/s00251-005-0025-x

    Article  PubMed  Google Scholar 

  36. Marmesat E, Schmidt K, Saveljev AP, Seryodkin IV, Godoy JA (2017) Retention of functional variation despite extreme genomic erosion: MHC allelic repertoires in the Lynx genus. BMC Evol Biol 17:158. https://doi.org/10.1186/s12862-017-1006-z

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  37. Marshall AG (1981) The ecology of ectoparasitic insects. Academic Press, London

    Google Scholar 

  38. Medzhitov R (2007) Recognition of microorganisms and activation of the immune response. Nature 449:819–826. https://doi.org/10.1038/nature06246

    CAS  Article  PubMed  Google Scholar 

  39. Møller AP, Rózsa L (2005) Parasite biodiversity and host defenses: chewing lice and immune response of their avian hosts. Oecologia 142:169–176. https://doi.org/10.1007/s00442-004-1735-8

    Article  PubMed  Google Scholar 

  40. Møller AP, Erritzøe J, Rózsa L (2010) Ectoparasites, uropygial glands and hatching success in birds. Oecologia 163:303–311. https://doi.org/10.1007/s00442-009-1548-x

    Article  PubMed  Google Scholar 

  41. Moreno-Rueda G (2010) Uropygial gland size correlates with feather holes, body condition and wingbar size in the house sparrow Passer domesticus. J Avian Biol 41:229–236. https://doi.org/10.1111/j.1600-048X.2009.04859.x

    Article  Google Scholar 

  42. Murphy KP, Janeway C (2008) Janeway’s immunobiology. Garland Science, London

    Google Scholar 

  43. Nováková E, Hypša V, Moran NA (2009) Arsenophonus, an emerging clade of intracellular symbionts with a broad host distribution. BMC Microbiol 9:1–14. https://doi.org/10.1186/1471-2180-9-143

    Article  Google Scholar 

  44. Oliver MK, Telfer S, Piertney SB (2009) Major histocompatibility complex (MHC) heterozygote superiority to natural multi-parasite infections in the water vole (Arvicola terrestris). Proc Biol Sci 276:1119–1128. https://doi.org/10.1098/rspb.2008.1525

    CAS  Article  PubMed  Google Scholar 

  45. Olsson M, Wapstra E, Madsen T, Ujvari B, Rugfelt C (2005) Costly parasite resistance: a genotype-dependent handicap in sand lizards? Biol Lett 1:375–377. https://doi.org/10.1098/rsbl.2005.0339

    Article  PubMed  PubMed Central  Google Scholar 

  46. Oppelt C, Starkloff A, Rausch P et al (2010) Major histocompatibility complex variation and age-specific endoparasite load in subadult European rabbits. Mol Ecol 19:4155–4167. https://doi.org/10.1111/j.1365-294X.2010.04766.x

    CAS  Article  PubMed  Google Scholar 

  47. Owen JP, Delany ME, Mullens B a. (2008) MHC haplotype involvement in avian resistance to an ectoparasite. Immunogenetics 60:621–631

    CAS  Article  Google Scholar 

  48. Owen JP, Delany ME, Cardona CJ et al (2009) Host inflammatory response governs fitness in an avian ectoparasite, the northern fowl mite (Ornithonyssus sylviarum). Int J Parasitol 39:789–799. https://doi.org/10.1016/j.ijpara.2008.12.008

    Article  PubMed  Google Scholar 

  49. Owen JP, Nelson AC, Clayton DH (2010) Ecological immunology of bird-ectoparasite systems. Trends Parasitol 26:530–539. https://doi.org/10.1016/j.pt.2010.06.005

    Article  PubMed  Google Scholar 

  50. Palma R, Price R (2010) The species of Myrsidea Waterston (Insecta: Phthiraptera: Menoponidae) from the Galápagos Islands, with descriptions of new taxa. Tuhinga 21:135–146

    Google Scholar 

  51. Pilosof S, Fortuna MA, Cosson J-F et al (2014) Host-parasite network structure is associated with community-level immunogenetic diversity. Nat Commun 5:5172–5179. https://doi.org/10.1038/ncomms6172

    CAS  Article  PubMed  Google Scholar 

  52. R Core Team (2015) R: a language and environment for statistical computing

  53. Richner H, Oppliger A, Christe P (1993) Effect of an ectoparasite on reproduction in great tits. J Anim Ecol 62:703. https://doi.org/10.2307/5390

    Article  Google Scholar 

  54. Rock KL, Reits E, Neefjes J (2016) Present yourself! By MHC class I and MHC class II molecules. Trends Immunol 37:724–737. https://doi.org/10.1016/j.it.2016.08.010

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  55. Savage AE, Zamudio KR (2011) MHC genotypes associate with resistance to a frog-killing fungus. Proc Natl Acad Sci U S A 108:16705–16710. https://doi.org/10.1073/pnas.1106893108

    Article  PubMed  PubMed Central  Google Scholar 

  56. Schad J, Dechmann DKN, Voigt CC, Sommer S (2012) Evidence for the “good genes” model: association of MHC class II DRB alleles with ectoparasitism and reproductive state in the neotropical lesser bulldog bat, Noctilio albiventris. PLoS One 7:e37101. https://doi.org/10.1371/journal.pone.0037101

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  57. Schneider DS, Ayres JS (2008) Two ways to survive infection: what resistance and tolerance can teach us about treating infectious diseases. Nat Rev Immunol 8:889–895. https://doi.org/10.1038/nri2432

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  58. Schwensow N, Fietz J, Dausmann KH, Sommer S (2007) Neutral versus adaptive genetic variation in parasite resistance: importance of major histocompatibility complex supertypes in a free-ranging primate. Heredity (Edinb) 99:265–277. https://doi.org/10.1038/sj.hdy.6800993

    CAS  Article  Google Scholar 

  59. Seifertová M, Jarkovský J, Šimková A (2016) Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)? Parasitol Res 115:1401–1415. https://doi.org/10.1007/s00436-015-4874-4

    Article  PubMed  Google Scholar 

  60. Sepil I, Lachish S, Hinks AE, Sheldon BC (2013) Mhc supertypes confer both qualitative and quantitative resistance to avian malaria infections in a wild bird population. Proc R Soc B Biol Sci 280:20130134. https://doi.org/10.1098/rspb.2013.0134

    CAS  Article  Google Scholar 

  61. Sette A, Sidney J (1998) HLA supertypes and supermotifs: a functional perspective on HLA polymorphism. Curr Opin Immunol 10:478–482. https://doi.org/10.1016/S0952-7915(98)80124-6

    CAS  Article  PubMed  Google Scholar 

  62. Slade R, McCallum H (1992) Overdominant vs. frequency-dependent selection at MHC loci. Genetics 132:861–862

    CAS  PubMed  PubMed Central  Google Scholar 

  63. Slade JWG, Watson MJ, Kelly TR et al (2016) Chemical composition of preen wax reflects major histocompatibility complex similarity in songbirds. Proc R Soc B Biol Sci 283:20161966. https://doi.org/10.1098/rspb.2016.1966

    CAS  Article  Google Scholar 

  64. Soler JJ, Peralta-Sánchez JM, Martín-Platero AM, Martín-Vivaldi M, Martínez-Bueno M, Møller AP (2012) The evolution of size of the uropygial gland: mutualistic feather mites and uropygial secretion reduce bacterial loads of eggshells and hatching failures of European birds. J Evol Biol 25:1779–1791. https://doi.org/10.1111/j.1420-9101.2012.02561.x

    CAS  Article  PubMed  Google Scholar 

  65. Spurgin LG, Richardson DS (2010) How pathogens drive genetic diversity: MHC, mechanisms and misunderstandings. Proc Biol Sci 277:979–988. https://doi.org/10.1098/rspb.2009.2084

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  66. Štefka J, Hoeck PEA, Keller LF, Smith VS (2011) A hitchhikers guide to the Galápagos: cophylogeography of Galápagos mockingbirds and their parasites. BMC Evol Biol 11:284. https://doi.org/10.1186/1471-2148-11-284

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  67. Tompkins DM, Mitchell RA, Bryant DM (2006) Hybridization increases measures of innate and cell-mediated immunity in an endangered bird species. J Anim Ecol 75:559–564. https://doi.org/10.1111/j.1365-2656.2006.01076.x

    Article  PubMed  Google Scholar 

  68. Trachtenberg E, Korber B, Sollars C, Kepler TB, Hraber PT, Hayes E, Funkhouser R, Fugate M, Theiler J, Hsu YS, Kunstman K, Wu S, Phair J, Erlich H, Wolinsky S (2003) Advantage of rare HLA supertype in HIV disease progression. Nat Med 9:928–935. https://doi.org/10.1038/nm893

    CAS  Article  PubMed  Google Scholar 

  69. Untalan PM, Pruett JH, Steelman CD (2007) Association of the bovine leukocyte antigen major histocompatibility complex class II DRB3*4401 allele with host resistance to the lone star tick, Amblyomma americanum. Vet Parasitol 145:190–195. https://doi.org/10.1016/j.vetpar.2006.12.003

    CAS  Article  PubMed  Google Scholar 

  70. Vlček J, Hoeck PEA, Keller LF, Wayhart JP, Dolinová I, Štefka J (2016) Balancing selection and genetic drift create unusual patterns of MHCIIβ variation in Galápagos mockingbirds. Mol Ecol 25:4757–4772. https://doi.org/10.1111/mec.13807

    CAS  Article  PubMed  Google Scholar 

  71. Walker M, Steiner S, Brinkhof MWG, Richner H (2003) Induced responses of nestling great tits reduce hen flea reproduction. Oikos 102:67–74. https://doi.org/10.1034/j.1600-0706.2003.12208.x

    Article  Google Scholar 

  72. Walther BA, Clayton DH (1997) Dust-ruffling: a simple method for quantifying. J Field Ornithol 68:509–518. https://doi.org/10.2307/4514260

    Article  Google Scholar 

  73. Westerdahl H, Asghar M, Hasselquist D, Bensch S (2012) Quantitative disease resistance: to better understand parasite-mediated selection on major histocompatibility complex. Proc Biol Sci 279:577–584. https://doi.org/10.1098/rspb.2011.0917

    Article  PubMed  Google Scholar 

  74. Westerdahl H, Stjernman M, Råberg L, Lannefors M, Nilsson JÅ (2013) MHC-I affects infection intensity but not infection status with a frequent avian malaria parasite in blue tits. PLoS One 8:e72647. https://doi.org/10.1371/journal.pone.0072647

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  75. Whiteman NK, Matson KD, Bollmer JL, Parker PG (2006) Disease ecology in the Galápagos hawk (Buteo galapagoensis): host genetic diversity, parasite load and natural antibodies. Proc Biol Sci 273:797–804. https://doi.org/10.1098/rspb.2005.3396

    Article  PubMed  Google Scholar 

  76. Wikel SK (1982) Immune responses to arthropods and their products. Annu Rev Entomol 27:21–48. https://doi.org/10.1146/annurev.en.27.010182.000321

    CAS  Article  PubMed  Google Scholar 

  77. Worley K, Collet J, Spurgin LG, Cornwallis C, Pizzari T, Richardson DS (2010) MHC heterozygosity and survival in red junglefowl. Mol Ecol 19:3064–3075. https://doi.org/10.1111/j.1365-294X.2010.04724.x

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Prof. Lukas Keller and anonymous reviewers for valuable comments on the manuscript. We also thank the Galápagos National Park Service for permission to conduct this research (Permit Nos. PC-48-10 and PC-08-14) and the Charles Darwin Foundation for assistance in the field. We thank Czech Science Foundation and Grant Agency of the University of South Bohemia for funding.

Funding

The research was funded by the Czech Science Foundation (project no. P506/12/P529) and Grant Agency of the University of South Bohemia (project no. 048/2019/P).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jakub Vlček.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

All applicable international, national, and/or institutional guidelines for the care and use of animals were followed.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Una Ryan

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vlček, J., Štefka, J. Association between louse abundance and MHC II supertypes in Galápagos mockingbirds. Parasitol Res 119, 1597–1605 (2020). https://doi.org/10.1007/s00436-020-06617-3

Download citation

Keywords

  • Arms race
  • Co-evolution
  • Immunity
  • Ectoparasite
  • Supertype