Skip to main content
Log in

The effect of edelfosine on GRA1 and MIC3 expressions in acute toxoplasmosis

  • Protozoology - Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Phosphoinositide-dependent phospholipase-C (PI-PLC) triggers the calcium signaling pathway which plays an important role in dense granule and microneme secretion and pathogenesis of Toxoplasma gondii (T. gondii). There are limited data about the effects of phospholipid analogues against T. gondii. The current study assessed the effect of edelfosine, as a phospholipid analogue, on GRA1 and MIC3 expressions using in vitro and in vivo models of acute toxoplasmosis. Infected Vero cells were treated by edelfosine in two subgroups: 24 h following the cell infection and treatment at the same time of cell infection. Animal study was performed on forty mice in four groups including non-infected, infected untreated, infected edelfosine-treated, and infected pyrimethamine-treated. Gene and protein expression analyses were done using quantitative real-time PCR and western blot, respectively. Edelfosine significantly reduced the GRA1 (P < 0.01) and MIC3 (P < 0.01) mRNA and protein expressions in 24 h following the cell infection and at the same time of cell infection groups. In vivo study showed that the edelfosine significantly reduced the GRA1 expression in eye, and MIC3 expression in brain and liver. Moreover, the edelfosine-treated infected mice had significant higher survival rate compared with uninfected mice. The reducing effect of edelfosine on GRA1 and MIC3 mRNA and protein levels 24 h following the cell infection was more than treatment at the same time of cell infection group. Moreover, the effect of edelfosine on GRA1 and MIC3 expression in animal tissues was variable. These data showed that the edelfosine may decrease the T. gondii excretory/secretory antigens through inhibition of PI-PLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Azzouz S, Maache M, Garcia RG, Osuna A (2005) Leishmanicidal activity of edelfosine, miltefosine and ilmofosine. Basic Clin Pharmacol Toxicol 96(1):60–65

    Article  CAS  PubMed  Google Scholar 

  • Carruthers VB, Moreno SN, Sibley DL (1999) Ethanol and acetaldehyde elevate intracellular [Ca2+] and stimulate microneme discharge in Toxoplasma gondii. Biochem J 342(2):379–386

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Carruthers VB, Sibley LD (1997) Sequential protein secretion from three distinct organelles of toxoplasma gondii accompanies invasion of human fibroblasts. Eur J Cell Biol 73(2):114–123

    CAS  PubMed  Google Scholar 

  • Carruthers VB, Sibley LD (1999) Mobilization of intracellular calcium stimulates microneme discharge in Toxoplasma gondii. Mol Microbiol 31(2):421–428

    Article  CAS  PubMed  Google Scholar 

  • Charif H, Darcy F, Torpier G, Cesbron-Delauw MF, Capron A (1990) Toxoplasma gondii: characterization and localization of antigens secreted from tachyzoites. Exp Parasitol 71(1):114–124

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi S, Qi H, Coleman D, Rodriguez A, Hanson PI, Striepen B, Roos DS, Joiner KA (1999) Constitutive calcium-independent release of Toxoplasma gondii dense granules occurs through the NSF/SNAP/SNARE/Rab machinery. J Biol Chem 274(4):2424–2431

    Article  CAS  PubMed  Google Scholar 

  • Croft SL, Neal RA, Thornton EA, Herrmann DB (1993) Antileishmanial activity of the ether phospholipid ilmofosine. Trans R Soc Trop Med Hyg 87(2):217–219

    Article  CAS  PubMed  Google Scholar 

  • Croft SL, Seifert K, Duchêne M (2003) Antiprotozoal activities of phospholipid analogues. Mol Biochem Parasitol 126(2):165–172

    Article  CAS  PubMed  Google Scholar 

  • Croft SL, Snowdon D, Yardley V (1996) The activities of four anticancer alkyllysophospholipids against Leishmania donovani, Trypanosoma cruzi and Trypanosoma brucei. J Antimicrob Chemother 38(6):1041–1047

    Article  CAS  PubMed  Google Scholar 

  • Eissa MM, Barakat AM, Amer EI, Younis LK (2015) Could miltefosine be used as a therapy for toxoplasmosis? Exp Parasitol 157:12–22

    Article  CAS  PubMed  Google Scholar 

  • Escobar P, Matu S, Marques C, Croft SL (2002) Sensitivities of Leishmania species to hexadecylphosphocholine (miltefosine), ET-18-OCH3 (edelfosine) and amphotericin B. Acta Trop 81(2):151–157

    Article  CAS  PubMed  Google Scholar 

  • Fang J, Marchesini N, Moreno SN (2006) A Toxoplasma gondii phosphoinositide phospholipase C (TgPI-PLC) with high affinity for phosphatidylinositol. Biochem J 394(2):417–425

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garrison E, Treeck M, Ehret E, Butz H, Garbuz T, Oswald BP, Settles M, Boothroyd J, Arrizabalaga G (2012) A forward genetic screen reveals that calcium-dependent protein kinase 3 regulates egress in Toxoplasma. PLoS Pathog 8(11):e1003049

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Harnett W, Harnett MM (1998) Heterotrimeric guanine nucleotide-binding proteins in eukaryotic parasites. Parasitol Today 14(1):27–31

    Article  CAS  PubMed  Google Scholar 

  • Heesbeen EC, Verdonck LF, Staal GE, Rijksen G (1994) Protein kinase C is not involved in the cytotoxic action of 1-octadecyl-2-O-methyl-sn-glycerol-3-phosphocholine in HL-60 and K562 cells. Biochem Pharmacol 47(9):1481–1488

    Article  CAS  PubMed  Google Scholar 

  • Johnson AM, Mcdonald PJ, Nech SH (1979) Kinetics of the growth of Toxoplasma gondii (RH strain) in mice. Int J Parasitol 9:55–56

    Article  CAS  PubMed  Google Scholar 

  • Johnson SM, Murphy RC, Geiger JA, DeRocher AE, Zhang Z, Ojo KK, Larson ET, Perera BG, Dale EJ, He P, Reid MC, Fox AM, Mueller NR, Merritt EA, Fan E, Parsons M, van Voorhis W, Maly DJ (2012) Development of Toxoplasma gondii calcium-dependent protein kinase 1 (Tg CDPK1) inhibitors with potent anti-toxoplasma activity. J Med Chem 55(5):2416–2426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kieschnick H, Wakefield T, Narducci CA, Beckers C (2001) Toxoplasma gondii attachment to host cells is regulated by a calmodulin-like domain protein kinase. J Biol Chem 276(15):12369–12377

    Article  CAS  PubMed  Google Scholar 

  • Konstantinov SM, Eibl H, Berger MR (1997) Alkylphosphocholines induce apoptosis in HL-60 and U-937 leukemic cells. Cancer Chemother Pharmacol 41(3):210–216

    Article  Google Scholar 

  • Liendo A, Joiner KA (2000) Toxoplasma gondii: conserved protein machinery in an unusual secretory pathway? Microbes Infect 2(2):137–144

    Article  CAS  PubMed  Google Scholar 

  • Lourido S, Shuman J, Zhang C, Shokat KM, Hui R, Sibley LD (2010) Calcium-dependent protein kinase 1 is an essential regulator of exocytosis in Toxoplasma. Nature 465(7296):359–362

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lourido S, Zhang C, Lopez MS, Tang K, Barks J, Wang Q, Wildman SA, Shokat KM, Sibley LD (2013) Optimizing small molecule inhibitors of calcium-dependent protein kinase 1 to prevent infection by Toxoplasma gondii. J Med Chem 56(7):3068–3077

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lovett JL, Marchesini N, Moreno SN, Sibley LD (2002) Toxoplasma gondii microneme secretion involves intracellular Ca2+ release from inositol 1, 4, 5-triphosphate (IP3)/ryanodine-sensitive stores. J Biol Chem 277(29):25870–25876

    Article  CAS  PubMed  Google Scholar 

  • Lovett JL, Sibley LD (2003) Intracellular calcium stores in Toxoplasma gondii govern invasion of host cells. J Cell Sci 116(14):3009–3016

    Article  CAS  PubMed  Google Scholar 

  • Lux H, Heise N, Klenner T, Hart D, Opperdoes FR (2000) Ether–lipid (alkyl-phospholipid) metabolism and the mechanism of action of ether–lipid analogues in Leishmania. Mol Biochem Parasitol 111(1):1–4

    Article  CAS  PubMed  Google Scholar 

  • Malaquias AT, Oliveira MM (1999) Phospholipid signalling pathways in Trypanosoma cruzi growth control. Acta Trop 73(2):93–108

    Article  CAS  PubMed  Google Scholar 

  • McCoy JM, Whitehead L, van Dooren GG, Tonkin CJ (2013) Correction: TgCDPK3 regulates calcium-dependent egress of Toxoplasma gondii from host cells. PLoS Pathog 9(1)

  • Mollinedo F, Fernández-Luna JL, Gajate C, Martín-Martín B, Benito A, Martínez-Dalmau R, Modolell M (1997) Selective induction of apoptosis in cancer cells by the ether lipid ET-18-OCH3 (Edelfosine): molecular structure requirements, cellular uptake, and protection by Bcl-2 and Bcl-XL. Cancer Res 57(7):1320–1328

    CAS  PubMed  Google Scholar 

  • Montazeri M, Ebrahimzadeh MA, Ahmadpour E, Sharif M, Sarvi S, Daryani A (2016) Evaluation of propranolol effect on experimental acute and chronic toxoplasmosis using quantitative PCR. Antimicrob Agents Chemother 60(12):7128–7133

    CAS  PubMed  PubMed Central  Google Scholar 

  • Montazeri M, Mehrzadi S, Sharif M, Sarvi S, Tanzifi A, Aghayan SA, Daryani A (2018) Drug resistance in toxoplasma gondii. Front Microbiol 9

  • Moudy R, Manning TJ, Beckers CJ (2001) The loss of cytoplasmic potassium upon host cell breakdown triggers egress of Toxoplasma gondii. J Biol Chem 276:41492–41501

    Article  CAS  PubMed  Google Scholar 

  • Pace DA, McKnight CA, Liu J, Jimenez V, Moreno SN (2014) Calcium entry in toxoplasma gondii and its enhancing effect of invasion-linked traits. J Biol Chem 289(28):19637–19647

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moreno SNJ, Miranda K, Fang J, Rohloff P, de Souza W (2007) Calcium storage and homeostasis in Toxoplasma gondii. In: Weiss LM, Kim K (eds) Toxoplasma gondii, the model apicomplexan, perspectives and methods, 1st edn. Elsevier, pp 245–263

  • Saadatnia G, Haj Ghani H, Khoo BY, Maimunah A, Noordin R (2010) Research note optimization of toxoplasma gondii cultivation in VERO cell line. Trop Biomed 27:125–130

    CAS  PubMed  Google Scholar 

  • Seifert K, Duchêne M, Wernsdorfer WH, Kollaritsch H, Scheiner O, Wiedermann G, Hottkowitz T, Eibl H (2001) Effects of miltefosine and other alkylphosphocholines on human intestinal parasiteEntamoeba histolytica. Antimicrob Agents Chemother 45(5):1505–1510

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sidik SM, Triana MA, Paul AS, El Bakkouri M, Hackett CG, Tran F et al (2016) Using a genetically encoded sensor to identify inhibitors of toxoplasma gondii Ca2+ signalling. J Biol Chem:Jbc–M115

  • Sorrentino V, Barone V, Rossi D (2000) Intracellular Ca2+ release channels in evolution. Curr Opin Genet Dev 10(6):662–667

    Article  CAS  PubMed  Google Scholar 

  • Soto J, Toledo J, Gutierrez P, Nicholls RS, Padilla J, Engel J, Fischer C, Voss A, Berman J (2001) Treatment of American cutaneous leishmaniasis with miltefosine, an oral agent. Clin Infect Dis 33(7):e57–e61

    Article  CAS  PubMed  Google Scholar 

  • Sundar S, Makharia A, More DK, Agrawal G, Voss A, Fischer C, Bachmann P, Murray HW (2000) Short-course of oral miltefosine for treatment of visceral leishmaniasis. Clin Infect Dis 31(4):1110–1113

    Article  CAS  PubMed  Google Scholar 

  • Überall F, Oberhuber H, Maly K, Zaknun J, Demuth L, Grunicke HH (1991) Hexadecylphosphocholine inhibits inositol phosphate formation and protein kinase C activity. Cancer Res 51(3):807–812

    PubMed  Google Scholar 

  • van Haasteren G, Li S, Muda M, Susini S, Schlegel W (1999) Calcium signalling and gene expression. J Receptors Signal Transduct 19(1–4):481–492

    Article  Google Scholar 

  • Walochnik J, Duchêne M, Seifert K, Obwaller A, Hottkowitz T, Wiedermann G, Eibl H, Aspöck H (2002) Cytotoxic activities of alkylphosphocholines against clinical isolates of Acanthamoeba spp. Antimicrob Agents Chemother 46(3):695–701

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wieder T, Orfanos CE, Geilen CC (1998) Induction of ceramide-mediated apoptosis by the anticancer phospholipid analog, hexadecylphosphocholine. J Biol Chem 273(18):11025–11031

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We acknowledge the support by the Research Foundation of the Mazandaran University of Medical Sciences. Authors have a special appreciation to Dr. Amir Azimian for the primer design.

Funding

This work was supported financially from the vice chancellor for research at Mazandaran University of Medical Sciences (No. 1242).

Author information

Authors and Affiliations

Authors

Contributions

AT performed the cellular, animal, laboratory, and molecular testing. AK designed the study and supervised the molecular testing. SE advised selection of concentrations in cellular and animal studies. SS and MS supervised the animal study. MM collaborated in cellular testing. MM collaborated in final manuscript edition. AD designed and supervised the laboratory testing.

Corresponding author

Correspondence to Ahmad Daryani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics statement

This study was carried out in accordance with the recommendations of Ethics commission of the Mazandaran University of Medical Sciences. The protocol was approved by the ethics committee of Mazandaran University of Medical Sciences (Project ethic number: IR.MAZUMS.REC.1397.1242).

Additional information

Section Editor: Xing-Quan Zhu

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tanzifi, A., Khoshi, A., Emami, S. et al. The effect of edelfosine on GRA1 and MIC3 expressions in acute toxoplasmosis. Parasitol Res 119, 1371–1380 (2020). https://doi.org/10.1007/s00436-020-06601-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-020-06601-x

Keywords

Navigation