Genetic variation and heteroplasmy of Varroa destructor inferred from ND4 mtDNA sequences

Abstract

Varroa destructor, a parasitic mite of the western honey bee, Apis mellifera L., is a serious threat to colonies and beekeeping worldwide. Population genetics studies of the mite have provided information on two mitochondrial haplotypes infecting honey bee colonies, named K and J (after Korea and Japan, respectively, where they were originally identified). On the American continent, the K haplotype is much more prevalent, with the J haplotype only detected in some areas of Brazil. The aims of the present study were to assess the genetic diversity of V. destructor populations in the major beekeeping region of Argentina and to evaluate the presence of heteroplasmy at the nucleotide level. Phoretic mites were collected from managed A. mellifera colonies in ten localities, and four mitochondrial DNA (mtDNA) regions (COXI, ND4, ND4L, and ND5) were analyzed. Based on cytochrome oxidase subunit I (COXI) sequencing, exclusively the K haplotype of V. destructor was detected. Furthermore, two sub-haplotypes (KArg-N1 and KArg-N2) were identified from a variation in ND4 sequences and the frequency of these sub-haplotypes was found to significantly correlate with geographical latitude. The occurrence of site heteroplasmy was also evident for this gene. Therefore, ND4 appears to be a sensitive marker for detecting genetic variability in mite populations. Site heteroplasmy emerges as a phenomenon that could be relatively frequent in V. destructor.

This is a preview of subscription content, log in to check access.

Fig. 1

References

  1. Abrahamovich AH, Atela O, De la Rúa P, Galián J (2015) Assessment of the mitochondrial origin of honey bees from Argentina. J Apic Res 46(3):191–194

    CAS  Google Scholar 

  2. Agra MN, Conte CA, Corva PM, Cladera JL, Lanzavecchia SB, Palacio MA (2018) Molecular characterization of Apis mellifera colonies from Argentina: genotypic admixture associated with ecoclimatic regions and apicultural activities. Entomol Exp Appl 166(9):724–738

    CAS  Google Scholar 

  3. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215(3):403–410

    CAS  Google Scholar 

  4. Anderson DL, Trueman JWH (2000) Varroa jacobsoni (Acari: Varroidae) is more than one species. Exp Appl Acarol 24(3):165–189

    CAS  PubMed  Google Scholar 

  5. Anderson DL (2000) Variation in the parasitic bee mite Varroa jacobsoni Oud. Apidologie 31(2):281–292

    Google Scholar 

  6. Avise JC (2000) Phylogeography: the history and formation of species. Harvard University Press, Cambridge

  7. Beaurepaire AL, Krieger KJ, Moritz RF (2017) Seasonal cycle of inbreeding and recombination of the parasitic mite Varroa destructor in honeybee colonies and its implications for the selection of acaricide resistance. Infect Genet Evol 50:49–54

    CAS  PubMed  Google Scholar 

  8. Baruffi L, Damiani G, Guglielmino CR, Bandi C, Malacrida AR, Gasperi G (1995) Polymorphism within and between populations of Ceratitis capitata: comparison between RAPD and multilocus enzyme electrophoresis data. Heredity 74(4):425

    CAS  PubMed  Google Scholar 

  9. Chinnery PF, Thorburn DR, Samuels DC, White SL, Dahl HHM, Turnbull DM, Lightowlers RN, Howell N (2000) The inheritance of mitochondrial DNA heteroplasmy: random drift, selection or both? Trends Genet 16(11):500–505

    CAS  PubMed  Google Scholar 

  10. de Guzman LI, Rinderer TE, Stelzer JA (1999) Occurrence of two genotypes of Varroa jacobsoni Oud. in North America. Apidologie 30(1):31–36

    Google Scholar 

  11. De Jong D, Morse RA, Eickwort GC (1982) Mite pests of honey bees. Annu Rev Entomol 27(1):229–252

    Google Scholar 

  12. Di Rienzo JA, Casanoves F, Balzarini MG, Gonzalez L, Tablada M, Robledo CW (2010) InfoStat versión 2014: grupo infoStat. FCA, Córdoba, Argentina, Universidad Nacional de Córdoba

  13. Dietemann V, Nazzi F, Martin SJ, Anderson DL, Locke B, Delaplane KS et al (2013) Standard methods for varroa research. J Apic Res 52(1):1–54

    Google Scholar 

  14. Dietemann V, Beaurepaire A, Page P, Yañez O, Buawangpong N, Chantawannakul P, Neumann P (2019) Population genetics of ectoparasitic mites Varroa spp. in Eastern and Western honey bees. Parasitology 146(11):1429–1439

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Dynes TL, De Roode JC, Lyons JI, Berry JA, Delaplane KS, Brosi BJ (2017) Fine scale population genetic structure of Varroa destructor, an ectoparasitic mite of the honey bee (Apis mellifera). Apidologie 48(1):93–101

    Google Scholar 

  16. Eguaras MJ, Ruffinengo SR (2006) Estrategias para el control de varroa. 2da ed. Mar del Plata: Argentina; 2008

  17. Elbeaino T, Daher-Hjaij N, Ismaeil F, Mando J, Khaled BS, Kubaa RA (2016) Occurrence of deformed wing virus, chronic bee paralysis virus and mtDNA variants in haplotype K of Varroa destructor mites in Syrian apiaries. Exp Appl Acarol 69(1):11–19

    CAS  PubMed  Google Scholar 

  18. Evans JD (2000) Microsatellite loci in the honey bee parasitic mite Varroa jacobsoni. Mol Ecol 9(9):1436–1438

    CAS  PubMed  Google Scholar 

  19. Evans JD, Lopez DL (2002) Complete mitochondrial DNA sequence of the important honey bee pest, Varroa destructor (Acari: Varroidae). Exp Appl Acarol 27(1–2):69–78

    CAS  PubMed  Google Scholar 

  20. Farjamfar M, Saboori A, González-Cabrera J, Rodríguez CSH (2018) Genetic variability and pyrethroid susceptibility of the parasitic honey bee mite Varroa destructor (Acari: Varroidae) in Iran. Exp Appl Acarol 76(1):139–148

    CAS  PubMed  Google Scholar 

  21. Fernández CJ, de Rosas ARP, García BA (2013) Variation in mitochondrial NADH dehydrogenase subunit 5 and NADH dehydrogenase subunit 4 genes in the Chagas disease vector Triatoma infestans (Hemiptera: Reduviidae). Am J Trop Med Hyg 88(5):893–896

    PubMed  PubMed Central  Google Scholar 

  22. Gajić B, Radulovic Z, Stevanovic J, Kulisic Z, Vucicevic M, Simeunovic P, Stanimirovic Z (2013) Variability of the honey bee mite Varroa destructor in Serbia, based on mtDNA analysis. Exp Appl Acarol 61(1):97–105

    PubMed  Google Scholar 

  23. Gajić B, Stevanović J, Radulović Ž, Kulišić Z, Vejnović B, Glavinić U, Stanimirović Z (2016) Haplotype identification and detection of mitochondrial DNA heteroplasmy in Varroa destructor mites using ARMS and PCR–RFLP methods. Exp Appl Acarol 70(3):287–297

    PubMed  Google Scholar 

  24. Gajić B, Muñoz I, De la Rúa P, Stevanović J, Lakić N, Kulišić Z, Stanimirović Z (2019) Coexistence of genetically different Varroa destructor in Apis mellifera colonies. Exp Appl Acarol 78(3):315–326

    PubMed  Google Scholar 

  25. Garrido C, Rosenkranz P, Paxton RJ, Gonçalves LS (2003) Temporal changes in Varroa destructor fertility and haplotype in Brazil. Apidologie 34(6):535–541

    Google Scholar 

  26. Giacobino A, Pacini A, Molineri A, Rodriguez G, Crisanti, Cagnolo NB et al (2018) Potential associations between the mite Varroa destructor and other stressors in honeybee colonies (Apis mellifera L.) in temperate and subtropical climate from Argentina. Prev Vet Med 159:143–152

    PubMed  Google Scholar 

  27. Guerra JCV Jr, Issa MRC, Carneiro FE, Strapazzon R, Moretto G (2010) RAPD identification of Varroa destructor genotypes in Brazil and other regions of the Americas. Genet Mol Res 9(1):303–308

    CAS  PubMed  Google Scholar 

  28. Guzman-Novoa E, Vandame R, Arechavaleta ME (1999) Susceptibility of European and Africanized honey bees (Apis mellifera L.) to Varroa jacobsoni Oud. in Mexico. Apidologie 30:173–182

    Google Scholar 

  29. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  30. Invernizzi C, Zefferino I, Santos E, Sánchez L, Mendoza Y (2015) Multilevel assessment of grooming behavior against Varroa destructor in Italian and Africanized honey bees. J Apic Res 54(4):321–327

    Google Scholar 

  31. IUPAC-IUB Commission on Biochemical Nomenclature (1970) Abbreviations and symbols for nucleic acids, polynucleotides, and their constituents. Biochemistry 9(20):4022–4027. https://doi.org/10.1021/bi00822a023

    Article  Google Scholar 

  32. Kelomey AE, Paraiso A, Sina H, Legout H, Garnery L, Baba-Moussa L (2017) Genetic characterization of the honeybee ectoparasitic mite Varroa destructor from Benin (West Africa) using mitochondrial and microsatellite markers. Exp Appl Acarol 72(1):61–67

    PubMed  Google Scholar 

  33. Koeniger G, Koeniger N, Anderson DL, Lekprayoon C, Tingek S (2002) Mites from debris and sealed brood cells of Apis dorsata colonies in Sabah (Borneo) Malaysia, including a new haplotype of Varroa jacobsoni. Apidologie 33(1):15–24

    Google Scholar 

  34. Le Conte Y, Mondet F (2017) Natural selection of honeybees against Varroa destructor. In: Beekeeping–from science to practice. Springer, Cham, pp 189–194

    Google Scholar 

  35. Li ZB, Cheng TY, Xu XL, Song LL, Liu GH (2017) Genetic variation in mitochondrial genes of the tick Haemaphysalis flava collected from wild hedgehogs in China. Exp Appl Acarol 71(2):131–137

    CAS  PubMed  Google Scholar 

  36. Li ZB, Fu YT, Cheng TY, Yao GM, Hou QH, Li F, Zhao Y, Zou FC, Liu GH (2019) Mitochondrial gene heterogeneity and population genetics of Haemaphysalis longicornis (Acari: Ixodidae) in China. Acta Parasit 64:360–366

    CAS  PubMed  Google Scholar 

  37. Liu ZQ, Liu YF, Kuermanali N, Wang DF, Chen SJ, Guo HL, Zhao L, Wang JW, Han T, Wang YZ, Wang J, Shen CF, Zhang ZZ, Wang J (2018) Sequencing of complete mitochondrial genomes confirms synonymization of Hyalomma asiaticum asiaticum and kozlovi and advances phylogenetic hypotheses for the Ixodidae. PLoS One 13(5):e0197524

    PubMed  PubMed Central  Google Scholar 

  38. Maggi M, Medici S, Quintana S, Ruffinengo S, Marcángeli J, Martinez PG, Fuselli S, Eguaras M (2012) Genetic structure of Varroa destructor populations infesting Apis mellifera colonies in Argentina. Exp Appl Acarol 56(4):309–318

    CAS  PubMed  Google Scholar 

  39. Maggi M, Antunez K, Invernizzi C, Aldea P, Vargas M, Negri P, Brasesco C, De Jong D, Message D, Weinstein Teixeira E, Principal J, Barrios C, Ruffinengo S, Rodríguez Da Silva R, Barrios C (2016) Honey bee health in South America. Apidologie 47(6):835–854

    Google Scholar 

  40. Martin SJ, Medina LM (2004) Africanized honey bees have unique tolerance to Varroa mites. Trends Parasitol 20:112–114

    PubMed  Google Scholar 

  41. Masta SE (2000) Mitochondrial sequence evolution in spiders: intraspecific variation in tRNAs lacking the TΨC arm. Mol Biol Evol 17(7):1091–1100

    CAS  PubMed  Google Scholar 

  42. Matheson A (1995) First documented findings of Varroa jacobsoni outside its presumed natural range. Apiacta 30:1–8

    Google Scholar 

  43. Meraner A, Brandstätter A, Thaler R, Aray B, Unterlechner M, Niederstätter H, Parson W, Zelger R, Dalla Via J, Dallinger R (2008) Molecular phylogeny and population structure of the codling moth (Cydia pomonella) in Central Europe: I. Ancient clade splitting revealed by mitochondrial haplotype markers. Mol Phylogenet Evol 48(3):825–837

    CAS  PubMed  Google Scholar 

  44. Merke J (2016) Dinámica poblacional de Varroa destructor y Apis mellifera L. como herramienta para la selección de abejas tolerantes. Tesis de doctorado. Universidad Nacional de Mar del Plata, Argentina

  45. Michel AP, Grushko O, Guelbeogo WM, Lobo NF, Sagnon NF, Costantini C, Besansky NJ (2006) Divergence with gene flow in Anopheles funestus from the Sudan savanna of Burkina Faso, West Africa. Genetics 173(3):1389–1395

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Montiel JC, Piola GA (1976) A new enemy of bees. In: Harnaj V (ed) Varroasis, a honey bee disease. Apimondia Publishing House, Bucharest, pp 36–38

    Google Scholar 

  47. Moretto G, Gonçalves LS, De Jong D, Bichuette MZ (1991) The effects of climate and bee raceon Varroa jacobsoniOud infestation in Brazil. Apidologie 22(3):197–203

    Google Scholar 

  48. Muñoz I, Garrido-Bailón E, Martín-Hernández R, Meana A, Higes M, De la Rúa P (2008) Genetic profile of Varroa destructor infesting Apis mellifera iberiensis colonies. J Apic Res 47(4):310–313

    Google Scholar 

  49. Navajas M, Anderson DL, De Guzman LI, Huang ZY, Clement J, Zhou T, Le Conte Y (2010) New Asian types of Varroa destructor: a potential new threat for world apiculture. Apidologie 41(2):181–193

    CAS  Google Scholar 

  50. Navajas M, Conte YL, Solignac M, Cros-Arteil S, Cornuet JM (2002) The complete sequence of the mitochondrial genome of the honeybee ectoparasite mite Varroa destructor (Acari: Mesostigmata). Mol Biol Evol 19(12):2313–2317

    CAS  PubMed  Google Scholar 

  51. Nazzi F, Le Conte Y (2016) Ecology of Varroa destructor, the major ectoparasite of the western honey bee, Apis mellifera. Annu Rev Entomol 61:417–432

    CAS  PubMed  Google Scholar 

  52. Neumann P, Carreck NL (2010) Honey bee colony losses. J Apic Res 49(1):1–6

    Google Scholar 

  53. Oldroyd BP (1999) Coevolution while you wait: Varroa jacobsoni, a new parasite of Western honeybees. Trends Ecol Evol 14(8):312–315

    CAS  PubMed  Google Scholar 

  54. Pinto MA, Johnston JS, Rubink WL, Coulson RN, Patton JC, Sheppard WS (2003) Identification of Africanized honey bee (Hymenoptera: Apidae) mitochondrial DNA: validation of a rapid polymerase chain reaction-based assay. Ann Entomol Soc Am 96(5):679–684

    CAS  Google Scholar 

  55. Rinderer T, De Guzman L, Sylvester HA (2004) Re-examination of the accuracy of a detergent solution for varroa mite detection. Am Bee J 144(7):560–562

    Google Scholar 

  56. Roberts JMK, Anderson DL, Tay WT (2015) Multiple hostáshifts by the emerging honeybee parasite, Varroa jacobsoni. Mol Ecol 24(10):2379–2391

    CAS  PubMed  Google Scholar 

  57. Robison GA, Balvin O, Schal C, Vargo EL, Booth W (2015) Extensive mitochondrial heteroplasmy in natural populations of a resurging human pest, the bed bug (Hemiptera: Cimicidae). J Med Entomol 52(4):734–738

    CAS  PubMed  PubMed Central  Google Scholar 

  58. Rosenkranz P (1999) Honey bee (Apis mellifera L.) tolerance to Varroa jacobsoni Oud. in South America. Apidologie 30:159–172

    Google Scholar 

  59. Rosenkranz P, Aumeier P, Ziegelmann B (2010) Biology and control of Varroa destructor. J Invertebr Pathol 103:S96–S119

    PubMed  Google Scholar 

  60. Salvadé CEO, Boldo, JT, Cañedo AD & Leher CEP (2016) Identificação Do Perfil Genotípico Do Ácaro Ectoparasito Varroa Destructor Em Apiários No Sudoeste Rio-Grandense. Anais do Salão Internacional de Ensino, Pesquisa e Extensão 7(2)

  61. Sheppard WS, Rinderer TE, Garnery L, Shimanuki H (1999) Analysis of Africanized honeybee mitochondrial DNA reveals further diversity of origin. Genet Mol Biol 22:73–75

    Google Scholar 

  62. SIGA (2018) Sistema de Información y Gestión Agrometeorológica - Instituto Nacional de Tecnología Agropecuaria (INTA) v.1.0.5. Available at: siga2.inta.gov.ar 

  63. Solignac M, Cornuet JM, Vautrin D, Le Conte Y, Anderson D, Evans J, Cros-Arteil S, Navajas M (2005) The invasive Korea and Japan types of Varroa destructor, ectoparasitic mites of the Western honeybee (Apis mellifera), are two partly isolated clones. Proc R Soc Lond B Biol Sci 272(1561):411–419

    Google Scholar 

  64. StatSoft INC (2001) STATISTICA (data analysis software system), version 6. Tulsa, USA, 150

  65. Strapazzon R, Carneiro FE, Guerra-Júnior J, Moretto G (2009) Genetic characterization of the mite Varroa destructor (Acari: Varroidae) collected from honey bees Apis mellifera (Hymenoptera, Apidae) in the state of Santa Catarina, Brazil. Genet Mol Res 8(3):990–997

    CAS  PubMed  Google Scholar 

  66. Van Leeuwen T, Vanholme B, Van Pottelberge S, Van Nieuwenhuyse P, Nauen R, Tirry L, Denholm I (2008) Mitochondrial heteroplasmy and the evolution of insecticide resistance: non-Mendelian inheritance in action. Proc Natl Acad Sci 105(16):5980–5985

    PubMed  Google Scholar 

  67. Van Leeuwen T, Vontas J, Tsagkarakou A, Dermauw W, Tirry L (2010) Acaricide resistance mechanisms in the two-spotted spider mite Tetranychus urticae and other important Acari: a review. Insect Biochem Mol Biol 40(8):563–572

    PubMed  Google Scholar 

  68. Vandame R, Palacio MA (2010) Preserved honey bee health in Latin America: a fragile equilibrium due to low-intensity agriculture and beekeeping? Apidologie 41(3):243–255

    Google Scholar 

  69. VanEngelsdorp D, Hayes J Jr, Underwood RM, Caron D, Pettis J (2011) A survey of managed honey bee colony losses in the USA, fall 2009 to winter 2010. J Apic Res 50(1):1–10

    Google Scholar 

  70. Warrit N, Smith DR, Lekprayoon C (2006) Genetic subpopulations of Varroa mites and their Apis cerana hosts in Thailand. Apidologie 37(1):19–30

    CAS  Google Scholar 

  71. White DJ, Wolff JN, Pierson M, Gemmell NJ (2008) Revealing the hidden complexities of mtDNA inheritance. Mol Ecol 17(23):4925–4942

    CAS  PubMed  Google Scholar 

  72. Wolff JN, Nafisinia M, Sutovsky P, Ballard JWO (2013) Paternal transmission of mitochondrial DNA as an integral part of mitochondrial inheritance in metapopulations of Drosophila simulans. Heredity 110(1):57–62

    CAS  PubMed  Google Scholar 

  73. Xiong H, Barker SC, Burger TD, Raoult D, Shao R (2013) Heteroplasmy in the mitochondrial genomes of human lice and ticks revealed by high throughput sequencing. PLoS One 8(9):e73329

    CAS  PubMed  PubMed Central  Google Scholar 

  74. Zhou T, Anderson DL, Huang ZY, Huang S, Yao J, Ken T, Zhang Q (2004) Identification of Varroa mites (Acari: Varroidae) infesting Apis cerana and Apis mellifera in China. Apidologie 35(6):645–654

    CAS  Google Scholar 

Download references

Acknowledgments

We thank Andrea Aignasse, Emilio Figini, Gerardo Genari, Analía Martínez, Julieta Merke, and Graciela Rodriguez for providing the samples of V. destructor. Special thanks to all technicians of INTA’s Program of Apiculture for their support in the field. We are also grateful to Cecilia Pascuan, Romina Frare, and Julieta Salgueiro for their assistance with the cloning experiments, and to Marcelo Agra for his assistance with the genetic characterization of worker honey bees.

Funding

This study was financially supported by The National Agency for the Promotion of Science and Technology (ANPCyT) PICT 2016-0221 to ACS, and The National Institute of Agricultural Technology (INTA) PNAPI 1112042 (module honeybee genetics) to MAP, ACS, and SBL.

Author information

Affiliations

Authors

Contributions

ACS, SBL, MAP, and JLC conceived the study; IM conducted the experiments and analyzed the data; MCL provided data analysis support; RMR provided experimental support; IM, ACS, and SBL wrote the manuscript. All authors accepted the final version of the manuscript.

Corresponding author

Correspondence to Alejandra C. Scannapieco.

Ethics declarations

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Handling Editor: Una Ryan

Electronic supplementary material

ESM 1

(DOCX 4.78 mb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Muntaabski, I., Russo, R.M., Liendo, M.C. et al. Genetic variation and heteroplasmy of Varroa destructor inferred from ND4 mtDNA sequences. Parasitol Res 119, 411–421 (2020). https://doi.org/10.1007/s00436-019-06591-5

Download citation

Keywords

  • Mites
  • Genetic variability
  • Haplotypes
  • mtDNA heteroplasmy
  • Molecular markers
  • Apis mellifera