Skip to main content

Comparative genomics: how has it advanced our knowledge of cryptosporidiosis epidemiology?

Abstract

Whole genomic sequencing (WGS) and comparative genomics are increasingly used in the characterization of Cryptosporidium spp. They are facilitated by the establishment of procedures for WGS analysis of clinical specimens without laboratory propagation of pathogens. Results of recent comparative genomics analysis suggest that gene duplication might be associated with broad host ranges of some zoonotic Cryptosporidium species and subtypes, while genetic recombination could be involved in the emergence of virulent subtypes. The availability of WGS data has further facilitated the development of advanced molecular typing tools. The use of these tools together with comparative genomics analyses has begun to improve the investigations of outbreaks in industrialized nations. More WGS data, however, are needed from both industrialized nations and developing countries before we can have in-depth understanding of the population genetics and evolution of Cryptosporidium spp. and genetic determinants of various phenotypic traits in human-pathogenic subtypes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445

    CAS  PubMed  Article  Google Scholar 

  • Andersson S, Sikora P, Karlberg ML, Winiecka-Krusnell J, Alm E, Beser J, Arrighi RB (2015) It’s a dirty job--a robust method for the purification and de novo genome assembly of Cryptosporidium from clinical material. J Microbiol Methods 113:10–12

    CAS  PubMed  Article  Google Scholar 

  • Bankier AT, Spriggs HF, Fartmann B, Konfortov BA, Madera M, Vogel C, Teichmann SA, Ivens A, Dear PH (2003) Integrated mapping, chromosomal sequencing and sequence analysis of Cryptosporidium parvum. Genome Res 13:1787–1799

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Beser J, Hallström BM, Advani A, Andersson S, Östlund G, Winiecka-Krusnell J, Lebbad M, Alm E, Troell K, Arrighi RBG (2017) Improving the genotyping resolution of Cryptosporidium hominis subtype IbA10G2 using one step PCR-based amplicon sequencing. Infect Genet Evol 55:297–304

    CAS  PubMed  Article  Google Scholar 

  • Bouzid M, Hunter PR, Chalmers RM, Tyler KM (2013) Cryptosporidium pathogenicity and virulence. Clin Microbiol Rev 26:115–134

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Cama VA, Ross JM, Crawford S, Kawai V, Chavez-Valdez R, Vargas D, Vivar A, Ticona E, Navincopa M, Williamson J, Ortega Y, Gilman RH, Bern C, Xiao L (2007) Differences in clinical manifestations among Cryptosporidium species and subtypes in HIV-infected persons. J Infect Dis 196:684–691

    PubMed  Article  Google Scholar 

  • Cama VA, Bern C, Roberts J, Cabrera L, Sterling CR, Ortega Y, Gilman RH, Xiao L (2008) Cryptosporidium species and subtypes and clinical manifestations in children, Peru. Emerg Infect Dis 14:1567–1574

    PubMed  PubMed Central  Article  Google Scholar 

  • Chalmers RM, Caccio S (2016) Towards a consensus on genotyping schemes for surveillance and outbreak investigations of Cryptosporidium, Berlin, June 2016. Euro Surveill 21(37):30338

    PubMed Central  Article  Google Scholar 

  • Fayer R, Santin M, Macarisin D (2010) Cryptosporidium ubiquitum n. sp. in animals and humans. Vet Parasitol 172:23–32

    PubMed  Article  Google Scholar 

  • Fei J, Wu H, Su J, Jin C, Li N, Guo Y, Feng Y, Xiao L (2018) Characterization of MEDLE-1, a protein in early development of Cryptosporidium parvum. Parasit Vectors 11:312

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Feng Y, Lal AA, Li N, Xiao L (2011a) Subtypes of Cryptosporidium spp. in mice and other small mammals. Exp Parasitol 127:238–242

    CAS  PubMed  Article  Google Scholar 

  • Feng Y, Yang W, Ryan U, Zhang L, Kvác M, Koudela B, Modry D, Li N, Fayer R, Xiao L (2011b) Development of a multilocus sequence tool for typing Cryptosporidium muris and Cryptosporidium andersoni. J Clin Microbiol 49:34–41

    CAS  PubMed  Article  Google Scholar 

  • Feng Y, Torres E, Li N, Wang L, Bowman D, Xiao L (2013) Population genetic characterisation of dominant Cryptosporidium parvum subtype IIaA15G2R1. Int J Parasitol 43:1141–1147

    PubMed  Article  Google Scholar 

  • Feng Y, Tiao N, Li N, Hlavsa M, Xiao L (2014) Multilocus sequence typing of an emerging Cryptosporidium hominis subtype in the United States. J Clin Microbiol 52:524–530

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Feng Y, Li N, Roellig DM, Kelley A, Liu G, Amer S, Tang K, Zhang L, Xiao L (2017) Comparative genomic analysis of the IId subtype family of Cryptosporidium parvum. Int J Parasitol 47:281–290

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Feng Y, Ryan UM, Xiao L (2018) Genetic diversity and population structure of Cryptosporidium. Trends Parasitol 34:997–1011

    CAS  PubMed  Article  Google Scholar 

  • Gilchrist CA, Cotton JA, Burkey C, Arju T, Gilmartin A, Lin Y, Ahmed E, Steiner K, Alam M, Ahmed S, Robinson G, Zaman SU, Kabir M, Sanders M, Chalmers RM, Ahmed T, Ma JZ, Haque R, Faruque ASG, Berriman M, Petri WA (2018) Genetic diversity of Cryptosporidium hominis in a bangladeshi community as revealed by whole-genome sequencing. J Infect Dis 218:259–264

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Guo Y, Cebelinski E, Matusevich C, Alderisio KA, Lebbad M, McEvoy J, Roellig DM, Yang C, Feng Y, Xiao L (2015a) Subtyping novel zoonotic pathogen Cryptosporidium chipmunk genotype I. J Clin Microbiol 53:1648–1654

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Guo Y, Li N, Lysén C, Frace M, Tang K, Sammons S, Roellig DM, Feng Y, Xiao L (2015b) Isolation and enrichment of Cryptosporidium DNA and verification of DNA purity for whole-genome sequencing. J Clin Microbiol 53:641–647

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Guo Y, Tang K, Rowe LA, Li N, Roellig DM, Knipe K, Frace M, Yang C, Feng Y, Xiao L (2015c) Comparative genomic analysis reveals occurrence of genetic recombination in virulent Cryptosporidium hominis subtypes and telomeric gene duplications in Cryptosporidium parvum. BMC Genomics 16:320

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Hadfield SJ, Pachebat JA, Swain MT, Robinson G, Cameron SJ, Alexander J, Hegarty MJ, Elwin K, Chalmers RM (2015) Generation of whole genome sequences of new Cryptosporidium hominis and Cryptosporidium parvum isolates directly from stool samples. BMC Genomics 16:650

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Heiges M, Wang H, Robinson E, Aurrecoechea C, Gao X, Kaluskar N, Rhodes P, Wang S, He CZ, Su Y, Miller J, Kraemer E, Kissinger JC (2006) CryptoDB: a Cryptosporidium bioinformatics resource update. Nucleic Acids Res 34:D419–D422

    CAS  PubMed  Article  Google Scholar 

  • Ifeonu OO, Chibucos MC, Orvis J, Su Q, Elwin K, Guo F, Zhang H, Xiao L, Sun M, Chalmers RM, Fraser CM, Zhu G, Kissinger JC, Widmer G, Silva JC (2016) Annotated draft genome sequences of three species of Cryptosporidium: Cryptosporidium meleagridis isolate UKMEL1, C. baileyi isolate TAMU-09Q1 and C. hominis isolates TU502_2012 and UKH1. Pathog Dis 74:ftw080

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Iqbal J, Khalid N, Hira PR (2011) Cryptosporidiosis in Kuwaiti children: association of clinical characteristics with Cryptosporidium species and subtypes. J Med Microbiol 60:647–652

    PubMed  Article  Google Scholar 

  • Isaza JP, Galván AL, Polanco V, Huang B, Matveyev AV, Serrano MG, Manque P, Buck GA, Alzate JF (2015) Revisiting the reference genomes of human pathogenic Cryptosporidium species: reannotation of C. parvum Iowa and a new C. hominis reference. Sci Rep 5:16324

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Jex AR, Gasser RB (2010) Genetic richness and diversity in Cryptosporidium hominis and C. parvum reveals major knowledge gaps and a need for the application of “next generation” technologies--research review. Biotechnol Adv 28:17–26

    PubMed  Article  Google Scholar 

  • Jex AR, Gasser RB (2014) Cryptosporidium: Current state of genomics and systems biological research. Cryptosporidium: parasite and disease:327–344

  • Khan A, Shaik JS, Grigg ME (2018) Genomics and molecular epidemiology of Cryptosporidium species. Acta Trop 184:1–14

    CAS  PubMed  Article  Google Scholar 

  • Kotloff KL (2017) The burden and etiology of diarrheal illness in developing countries. Pediatr Clin N Am 64:799–814

    Article  Google Scholar 

  • Li N, Xiao L, Cama VA, Ortega Y, Gilman RH, Guo M, Feng Y (2013) Genetic recombination and Cryptosporidium hominis virulent subtype IbA10G2. Emerg Infect Dis 19:1573–1582

    PubMed  PubMed Central  Google Scholar 

  • Li N, Xiao L, Alderisio K, Elwin K, Cebelinski E, Chalmers R, Santin M, Fayer R, Kvac M, Ryan U, Sak B, Stanko M, Guo Y, Wang L, Zhang L, Cai J, Roellig D, Feng Y (2014) Subtyping Cryptosporidium ubiquitum, a zoonotic pathogen emerging in humans. Emerg Infect Dis 20:217–224

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Li B, Wu H, Li N, Su J, Jia R, Jiang J, Feng Y, Xiao L (2017) Preliminary characterization of MEDLE-2, a protein potentially involved in the invasion of Cryptosporidium parvum. Front Microbiol 8:1647

    PubMed  PubMed Central  Article  Google Scholar 

  • Liu S, Roellig DM, Guo Y, Li N, Frace MA, Tang K, Zhang L, Feng Y, Xiao L (2016) Evolution of mitosome metabolism and invasion-related proteins in Cryptosporidium. BMC Genomics 17:1006

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Mazurie AJ, Alves JM, Ozaki LS, Zhou S, Schwartz DC, Buck GA (2013) Comparative genomics of Cryptosporidium. Int J Genomics 2013:832756

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Mogi T, Kita K (2010) Diversity in mitochondrial metabolic pathways in parasitic protists Plasmodium and Cryptosporidium. Parasitol Int 59:305–312

    CAS  PubMed  Article  Google Scholar 

  • Nader JL, Mathers TC, Ward BJ, Pachebat JA, Swain MT, Robinson G, Chalmers RM, Hunter PR, van Oosterhout C, Tyler KM (2019) Evolutionary genomics of anthroponosis in Cryptosporidium. Nat Microbiol 4:826–836

    CAS  PubMed  Article  Google Scholar 

  • Nash JHE, Robertson J, Elwin K, Chalmers RA, Kropinski AM, Guy RA (2018) Draft genome assembly of a potentially zoonotic Cryptosporidium parvum isolate, UKP1. Microbiol Resour Announc 7:e01291–e01218

    PubMed  PubMed Central  Article  Google Scholar 

  • Robinson G, Chalmers RM (2012) Assessment of polymorphic genetic markers for multi-locus typing of Cryptosporidium parvum and Cryptosporidium hominis. Exp Parasitol 132:200–215

    CAS  PubMed  Article  Google Scholar 

  • Ryan U, Zahedi A, Paparini A (2016) Cryptosporidium in humans and animals-a one health approach to prophylaxis. Parasite Immunol 38:535–547

    CAS  PubMed  Article  Google Scholar 

  • Sikora P, Andersson S, Winiecka-Krusnell J, Hallström B, Alsmark C, Troell K, Beser J, Arrighi RB (2017) Genomic variation in IbA10G2 and other patient-derived Cryptosporidium hominis subtypes. J Clin Microbiol 55:844–858

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tang Y, Li N, Song M, Roellig DM, Feng Y, Xiao L (2016) Development of a multilocus sequence typing tool for high-resolution subtyping and genetic structure characterization of Cryptosporidium ubiquitum. Infect Genet Evol 45:256–261

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Tanriverdi S, Grinberg A, Chalmers RM, Hunter PR, Petrovic Z, Akiyoshi DE, London E, Zhang L, Tzipori S, Tumwine JK, Widmer G (2008) Inferences about the global population structures of Cryptosporidium parvum and Cryptosporidium hominis. Appl Environ Microbiol 74:7227–7234

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Troell K, Hallström B, Divne AM, Alsmark C, Arrighi R, Huss M, Beser J, Bertilsson S (2016) Cryptosporidium as a testbed for single cell genome characterization of unicellular eukaryotes. BMC Genomics 17:471

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Widmer G, Lee Y, Hunt P, Martinelli A, Tolkoff M, Bodi K (2012) Comparative genome analysis of two Cryptosporidium parvum isolates with different host range. Infect Genet Evol 12:1213–1221

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  • Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124:80–89

    CAS  PubMed  Article  Google Scholar 

  • Xiao L, Feng Y (2008) Zoonotic cryptosporidiosis. FEMS Immunol Med Microbiol 52:309–323

    CAS  PubMed  Article  Google Scholar 

  • Xiao L, Feng Y (2017) Molecular epidemiologic tools for waterborne pathogens Cryptosporidium spp. and Giardia duodenalis. Food and Waterborne Parasitology 8-9:14–32

    PubMed  PubMed Central  Article  Google Scholar 

  • Xiao L, Fayer R, Ryan U, Upton SJ (2004) Cryptosporidium taxonomy: recent advances and implications for public health. Clin Microbiol Rev 17:72–97

    PubMed  PubMed Central  Article  Google Scholar 

  • Xu P, Widmer G, Wang Y, Ozaki LS, Alves JM, Serrano MG, Puiu D, Manque P, Akiyoshi D, Mackey AJ, Pearson WR, Dear PH, Bankier AT, Peterson DL, Abrahamsen MS, Kapur V, Tzipori S, Buck GA (2004) The genome of Cryptosporidium hominis. Nature 431:1107–1112

    CAS  PubMed  Article  Google Scholar 

  • Xu Z, Guo Y, Roellig DM, Feng Y, Xiao L (2019) Comparative analysis reveals conservation in genome organization among intestinal Cryptosporidium species and sequence divergence in potential secreted pathogenesis determinants among major human-infecting species. BMC Genomics 20:406

    PubMed  PubMed Central  Article  CAS  Google Scholar 

  • Zhang S, Wang Y, Wu H, Li N, Jiang J, Guo Y, Feng Y, Xiao L (2019) Characterization of a species-specific insulinase-like protease in Cryptosporidium parvum. Front Microbiol 10:354

    PubMed  PubMed Central  Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (31820103014 and 31630078).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yaoyu Feng or Lihua Xiao.

Ethics declarations

Competing interests

The authors declare that they have no competing interests.

Additional information

Handling Editor: Una Ryan

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Fan, Y., Feng, Y. & Xiao, L. Comparative genomics: how has it advanced our knowledge of cryptosporidiosis epidemiology?. Parasitol Res 118, 3195–3204 (2019). https://doi.org/10.1007/s00436-019-06537-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-019-06537-x

Keywords

  • Cryptosporidium
  • Whole genome sequencing
  • Comparative genomics
  • Epidemiology