Advertisement

Characterization of the complete mitochondrial genome of the echinostome Echinostoma miyagawai and phylogenetic implications

  • Yi-Tian Fu
  • Yuan-Chun Jin
  • Fen LiEmail author
  • Guo-Hua LiuEmail author
Helminthology - Short Communication
  • 45 Downloads

Abstract

Echinostomes are important intestinal foodborne parasites. Despite their significance as pathogens, characterization of the molecular biology and phylogenetics of these parasites are limited. In the present study, we determined the entire mitochondrial (mt) genome of the echinostome Echinostoma miyagawai (Hunan isolate) and examined the phylogenetic relationship with selected members of the suborder Echinostomata. The complete mt genome of E. miyagawai (Hunan isolate) was 14,468 bp in size. This circular mt genome contained 12 protein-coding genes, 22 transfer RNA genes, two ribosomal RNA genes, and one non-coding region. The gene order and genomic content were identical with its congeners. Phylogenetic analyses (maximum parsimony, maximum likelihood, and Bayesian inference) based on the concatenated amino acid sequences of 12 protein-coding genes strongly supported monophyly for the genus Echinostoma; however, they rejected monophyly for the family Echinostomatidae and the genus Fasciola. The mt genomic data described in this study provides useful genetic markers for studying the population genetics, molecular biology, and phylogenetics of these echinostomes.

Keywords

Echinostome Mitochondrial genome Mitochondrial DNA Phylogenetic analyses 

Notes

Funding information

This study was financially supported by the Planned Program of Hunan Province Science and Technology Innovation (Grant no. 2018RS3085) and the Training Program for Excellent Young Innovators of Changsha (Grant no. KQ1802035).

Compliance with ethical standards

All procedures involving animals in the present study were approved, and this study was approved by the Animal Ethics Committee of Hunan Agricultural University (No. 43321503).

Competing interests

The authors declared that they have no competing interests.

Supplementary material

436_2019_6417_Fig3_ESM.png (4 mb)
Supplementary material S1

Inferred phylogenetic relationship among representative Echinostoma spp. and other suborder Echinostomata trematodes based on mitochondrial cox1 sequences utilizing maximum parsimony (MP), maximum likelihood (ML), and Bayesian inference (BI) using Opisthorchis viverrini as an outgroup. (PNG 4053 kb)

436_2019_6417_MOESM1_ESM.tif (1.3 mb)
High Resolution Image (TIF 1344 kb)

References

  1. Buddhachat K, Chontananarth (2019) Is species identification of Echinostoma revolutum using mitochondrial DNA barcoding feasible with high-resolution melting analysis? Parasitol Res 118:1799–1810CrossRefPubMedGoogle Scholar
  2. Cai XQ, Liu GH, Song HQ, Wu CY, Zou FC, Yan HK, Yuan ZG, Lin RQ, Zhu XQ (2012) Sequences and gene organization of the mitochondrial genomes of the liver flukes Opisthorchis viverrini and Clonorchis sinensis (Trematoda). Parasitol Res 110:235–243CrossRefPubMedGoogle Scholar
  3. Detwiler JT, Bos DH, Minchella DJ (2010) Revealing the secret lives of cryptic species: examining the phylogenetic relationships of echinostome parasites in North America. Mol Phylogenet Evol 55:611–620CrossRefPubMedGoogle Scholar
  4. Gasser RB (2006) Molecular tools—advances, opportunities and prospects. Vet Parasitol 136:69–89CrossRefPubMedGoogle Scholar
  5. Georgieva S, Faltýnková A, Brown R, Blasco-Costa I, Soldánová M, Sitko J, Scholz T, Kostadinova A (2014) Echinostoma ‘revolutum’ (Digenea: Echinostomatidae) species complex revisited: species delimitation based on novel molecular and morphological data gathered in Europe. Parasit Vectors 7:520PubMedPubMedCentralGoogle Scholar
  6. Graczyk TK, Fried B (1998) Echinostomiasis: a common but forgotten food-borne disease. Am J Trop Med Hyg 58:501–504CrossRefPubMedGoogle Scholar
  7. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704CrossRefPubMedGoogle Scholar
  8. Katoh K, Standley DM (2013) MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol Biol Evol 30:772–780
  9. Kostadinova A, Herniou EA, Barrett J, Littlewood DT (2003) Phylogenetic relationships of Echinostoma Rudolphi, 1809 (Digenea: Echinostomatidae) and related genera re-assessed via DNA and morphological analyses. Syst Parasitol 54:159–176CrossRefPubMedGoogle Scholar
  10. Le TH, Blair D, McManus DP (2000) Mitochondrial genomes of human helminths and their use as markers in population genetics and phylogeny. Acta Trop 77:243–256CrossRefPubMedGoogle Scholar
  11. Le TH, Nguyen NTB, Nguyen KT, Doan HTT, Dung DT, Blair D (2016) A complete mitochondrial genome from Echinochasmus japonicus supports the elevation of Echinochasminae Odhner, 1910 to family rank (Trematoda: Platyhelminthes). Infect Genet Evol 45:369–377CrossRefPubMedGoogle Scholar
  12. Liu GH, Yan HB, Otranto D, Wang XY, Zhao GH, Jia WZ, Zhu XQ (2014) Dicrocoelium chinensis and Dicrocoelium dendriticum (Trematoda: Digenea) are distinct lancet fluke species based on mitochondrial and nuclear ribosomal DNA sequences. Mol Phylogenet Evol 79:325–331CrossRefPubMedGoogle Scholar
  13. Lowe TM, Eddy SR (1997) tRNAscan-SE: a program for improved detection of transfer RNA genes in genomic sequence. Nucleic Acids Res 25:955–964CrossRefPubMedPubMedCentralGoogle Scholar
  14. Ma J, He JJ, Liu GH, Leontovyč R, Kašný M, Zhu XQ (2016) Complete mitochondrial genome of the giant liver fluke Fascioloides magna (Digenea: Fasciolidae) and its comparison with selected trematodes. Parasit Vectors 9:429CrossRefPubMedPubMedCentralGoogle Scholar
  15. Ma J, Sun MM, He JJ, Liu GH, Ai L, Chen MX, Zhu XQ (2017) Fasciolopsis buski (Digenea: Fasciolidae) from China and India may represent distinct taxa based on mitochondrial and nuclear ribosomal DNA sequences. Parasit Vectors 10:101CrossRefPubMedPubMedCentralGoogle Scholar
  16. Mohanta UK, Watanabe T, Anisuzzaman OY, Itagaki T (2019) Characterization of Echinostoma revolutum and Echinostoma robustum from ducks in Bangladesh based on morphology, nuclear ribosomal ITS2 and mitochondrial nad1 sequences. Parasitol Int 69:1–7CrossRefPubMedGoogle Scholar
  17. Na L, Gao JF, Liu GH, Fu X, Su X, Yue DM, Gao Y, Zhang Y, Wang CR (2016) The complete mitochondrial genome of Metorchis orientalis (Trematoda: Opisthorchiidae): comparison with other closely related species and phylogenetic implications. Infect Genet Evol 39:45–50CrossRefPubMedGoogle Scholar
  18. Nagataki M, Tantrawatpan C, Agatsuma T, Sugiura T, Duenngai K, Sithithaworn P, Andrews RH, Petney TN, Saijuntha W (2015) Mitochondrial DNA sequences of 37 collar-spined echinostomes (Digenea: Echinostomatidae) in Thailand and Lao PDR reveals presence of two species: Echinostoma revolutum and E. miyagawai. Infect Genet Evol 35:56–62CrossRefPubMedGoogle Scholar
  19. Noikong W, Wongsawad C, Chai JY, Saenphet S, Trudgett A (2014) Molecular analysis of echinostome metacercariae from their second intermediate host found in a localised geographic region reveals genetic heterogeneity and possible cryptic speciation. PLoS Negl Trop Dis 8: 2778Google Scholar
  20. Platt TR, Zelmer DA (2016) Effect of infection duration on habitat selection and morphology of adult Echinostoma caproni (Digenea: Echinostomatidae) in ICR mice. J Parasitol 102:37–41CrossRefPubMedGoogle Scholar
  21. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  22. Saijuntha W, Sithithaworn P, Duenngai K, Kiatsopit N, Andrews RH, Petney TN (2011) Genetic variation and relationships of four species of medically important echinostomes (Trematoda: Echinostomatidae) in South-East Asia. Infect Genet Evol 11:375–381CrossRefPubMedGoogle Scholar
  23. Shin EH, Guk SM, Kim HJ, Lee SH, Chai JY (2008) Trends in parasitic diseases in the Republic of Korea. Trends Parasitol 24:143–150CrossRefPubMedGoogle Scholar
  24. Swofford DL (2002) PAUP*: phylogenetic analysis using parsimony (*and other methods), version 4.0b10. Sinauer Associates, Sunderland, MassachusettsGoogle Scholar
  25. Talavera G, Castresana J (2007) Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Syst Biol 56:564–577CrossRefGoogle Scholar
  26. Toledo R, Radev V, Kanev I, Gardner SL, Fried B (2014) History of echinostomes (Trematoda). Acta Parasitol 59:555–567CrossRefPubMedGoogle Scholar
  27. Toledo R, Esteban JG (2016) An update on human echinostomiasis. Trans R Soc Trop Med Hyg 110:37–45CrossRefPubMedGoogle Scholar
  28. Yang X, Wang L, Chen H, Feng H, Shen B, Hu M, Fang R (2016) The complete mitochondrial genome of Gastrothylax crumenifer (Gastrothylacidae, Trematoda) and comparative analyses with selected trematodes. Parasitol Res 115:2489–2497CrossRefPubMedGoogle Scholar
  29. Zhang D, Li WX, Zou H, Wu SG, Li M, Jakovlić I, Zhang J, Chen R, Wang GT (2018) Mitochondrial genomes of two diplectanids (Platyhelminthes: Monogenea) expose paraphyly of the order Dactylogyridea and extensive tRNA gene rearrangements. Parasit Vectors 11:601CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Hunan Provincial Key Laboratory of Protein Engineering in Animal Vaccines, College of Veterinary MedicineHunan Agricultural UniversityChangshaChina
  2. 2.Hunan Co-Innovation Center of Animal Production SafetyChangshaChina

Personalised recommendations