Advertisement

Parasitology Research

, Volume 118, Issue 6, pp 1741–1749 | Cite as

Efficacy of silver nanoparticles against the adults and eggs of monogenean parasites of fish

  • Citlalic Altagracia Pimentel-Acosta
  • Francisco Neptalí Morales-Serna
  • María Cristina Chávez-Sánchez
  • Humberto Herman Lara
  • Alexey Pestryakov
  • Nina Bogdanchikova
  • Emma Josefina Fajer-ÁvilaEmail author
Fish Parasitology - Original Paper

Abstract

Monogeneans are a diverse group of parasites that are commonly found on fish. Some monogenean species are highly pathogenic to cultured fish. The present study aimed to determine the in vitro anthelmintic effect of silver nanoparticles (AgNPs) against adults and eggs of monogeneans in freshwater using Cichlidogyrus spp. as a model organism. We tested two types of AgNPs with different synthesis methodologies and size diameters: ARGOVIT (35 nm) and UTSA (1–3 nm) nanoparticles. Damage to the parasite tegument was observed by scanning electron microscopy. UTSA AgNPs were more effective than ARGOVIT; in both cases, there was a concentration-dependent effect. A concentration of 36 μg/L UTSA AgNPs for 1 h was 100% effective against eggs and adult parasites, causing swelling, loss of corrugations, and disruption of the parasite’s tegument. This is an interesting result considering that monogenean eggs are typically tolerant to antiparasite drugs and chemical agents. To the best of our knowledge, no previous reports have assessed the effect of AgNPs on any metazoan parasites of fish. Therefore, the present work provides a basis for future research on the control of fish parasite diseases.

Keywords

Control disease Silver nanoparticles Platyhelminthes Tegument Toxicity 

Notes

Acknowledgements

We would like to thank María Berenit Mendoza Garfias (Instituto de Biología, UNAM) for her support in processing samples for scanning electron microscopy. Rosa María Medina Guerrero and Irma Eugenia Martínez Rodríguez (CIAD-Mazatlán) provided technical assistance. The present study was supported by the National Council of Science and Technology (CONACyT), Mexico, through grant no. 258607: “Estudio del efecto de nanopartículas de plata en virus, bacterias y parásitos de organismos acuáticos” and CONACyT Networks grant no. 293418.

Compliance with ethical standards

This work was conducted using a tilapia–monogenean model system, and all procedures were performed in accordance with the ethical standards of the CIAD-Mazatlán following the American Veterinary Medical Association (AVMA) Guidelines for the Euthanasia of Animals.

Conflict of interest

The authors declare that they have no conflicts of interest.

References

  1. Aderibigbe BA (2017) Metal-based nanoparticles for the treatment of infectious diseases. Molecules 22(1370):1–37Google Scholar
  2. AVMA (2013) Guidelines for the euthanasia of animal: 2013 edition. American Veterinary Association, 102Google Scholar
  3. Ayala-Núñez NV, Lara-Villegas HH, Ixtepan-Turrent LC, Rodríguez-Padilla C (2009) Silver nanoparticles toxicity and bactericidal effect against methicillin-resistant Staphylococcus aureus: nanoscale does matter. NanoBiotechnology 5:2–9CrossRefGoogle Scholar
  4. Busch S, Dalsgaard I, Buchmann K (2003) Concomitant exposure of rainbow trout fry to Gyrodactylus derjavini and Flavobacterium psychrophilum: effects on infection and mortality of host. Vet Parasitol 117:117–122CrossRefGoogle Scholar
  5. Cable J, Harris PD, Bakke TA (2000) Population growth of Gyrodactylus salaris (Monogenea) on Norwegian and Baltic Atlantic salmon (Salmo salar) stocks. Parasitology 121:621–629CrossRefGoogle Scholar
  6. Cheng Y, Chen X, Song W, Kong Z, Li P, Liu Y (2013) Contribution of silver ions to the inhibition of infectivity of Schistosoma japonicum cercariae caused by silver nanoparticles. Parasitology 140:617–625CrossRefGoogle Scholar
  7. Cho Y, Mizuta Y, Akagi J, Toyoda T, Sone M, Ogawa K (2018) Size-dependent acute toxicity of silver nanoparticles in mice. J Toxicol Pathol 31:73–80CrossRefGoogle Scholar
  8. Dakal TC, Kumar A, Majumdar RS, Yadav V (2016) Mechanistic basis of antimicrobial actions of silver nanoparticles. Front Microbiol 7:1831CrossRefGoogle Scholar
  9. Dalton JP, Skelly P, Halton DW (2004) Role of the tegument and gut in nutrient uptake by parasitic platyhelminths. Can J Zool 82:211–232  https://doi.org/10.1139/Z03-213 CrossRefGoogle Scholar
  10. Davies KG, Curtis RHC (2011) Cuticle surface coat of plant-parasitic nematodes. Annu Rev Phytopathol 49:135–156CrossRefGoogle Scholar
  11. De la Torre-Escudero E, Bennett APS, Clarke A, Brennan GP, Robinson MW (2016) Extracellular vesicle biogenesis in helminths: more than one route to the surface? Trends Parasitol 32:921–929.  https://doi.org/10.1016/j.pt.2016.09.001 CrossRefPubMedGoogle Scholar
  12. El-Naggar MM, Khidr AA, Kearns GC (1991) Ultrastructural observations on the tegument and associated structures of the monogenean Cichlidogyrus halli typicus (Price & Kirk, 1967) Paperna, 1979. Int J Parasitol 21:707–713CrossRefGoogle Scholar
  13. Fajer-Ávila EJ, Velásquez-Medina SP, Betancourt-Lozano M (2007) Effectiveness of treatments against eggs, and adults of Haliotrema sp. and Euryhaliotrema sp. (Monogenea: Ancyrocephalinae) infecting red snapper, Lutjanus guttatus. Aquaculture 264:66–72CrossRefGoogle Scholar
  14. Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, Galdiero M (2015) Silver nanoparticles as potential antibacterial agents. Molecules 20:8856–8874CrossRefGoogle Scholar
  15. Francis-Floyd R (1996) Use of formalin to control fish parasites. College of Veterinary Medicine, Institute of Food and Agricultural Sciences, University of Florida, VM–77Google Scholar
  16. Gherbawy YA, Shalaby IM, El-sadek MSA, Elhariry HM, Banaja AA (2013) The anti-fasciolasis properties of silver nanoparticles produced by Trichoderma harzianum and their improvement of the anti-fasciolasis drug triclabendazole. Int J Mol Sci 14:21887–21898  https://doi.org/10.3390/ijms141121887 CrossRefGoogle Scholar
  17. Gorth DJ, Rand DM, Webster TJ (2011) Silver nanoparticle toxicity in Drosophila: size does matter. Int J Nanomedicine 6:343–350.  https://doi.org/10.2147/IJN.S16881 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Govindarajan M, Benelli G (2015) Facile biosynthesis of silver nanoparticles using Barleria cristata: mosquitocidal potential and biotoxicity on three non-target aquatic organism. Parasitol Res 115:925–935.  https://doi.org/10.1007/s00436-015-4817-0 CrossRefPubMedGoogle Scholar
  19. Hodová I, Sonnek R, Gelnar M, Valigurová A (2018) Architecture of Paradiplozoon homoion: a diplozoid monogenean exhibiting highly-developed equipment for ectoparasitism. PLoS One 13(2):e0192285CrossRefGoogle Scholar
  20. Ivask A, Kurvet I, Kasemets K, Blinova I, Aruoja V, Suppi S (2014) Size-dependent toxicity of silver nanoparticles to bacteria, yeast, algae, crustaceans and mammalian cells in vitro. PLoS One 9(7):e102108.  https://doi.org/10.1371/journal.pone.0102108 CrossRefPubMedPubMedCentralGoogle Scholar
  21. Johnstone IL (1993) The cuticle of the nematode Caenorhabditis elegans: a complex collagen structure. BioEssays 16(3):171–178CrossRefGoogle Scholar
  22. Juarez-Moreno K, Mejía-Ruiz CH, Díaz F, Reyna H, Re AD, Vázquez-Félix EF, Bogdanchikova N (2017) Effect of silver nanoparticles on the metabolic rate, hematological response, and survival of juvenile white shrimp Litopenaeus vannamei. Chemosphere 169:716–724.  https://doi.org/10.1016/j.chemosphere.2016.11.054 CrossRefPubMedGoogle Scholar
  23. Kaneko J, Yamada R, Brock J, Nakamura R (1988) Infection of tilapia, Oreochromis mossambicus (Trewavas) by a marine monogenean, Neobenedenia melleni (MacCallum, 1927) Yamaguti, 1963 in Kaneohe Bay, Hawaii, USA, and its treatment. J Fish Dis 11:295–300CrossRefGoogle Scholar
  24. Kar PK, Murmu S, Saha S, Tandon V, Acharya K (2014) Anthelmintic efficacy of gold nanoparticles derived from a phytopathogenic fungus, Nigrospora oryzae. PLoS One 9(1):  https://doi.org/10.1371/journal.pone.0084693):e84693CrossRefGoogle Scholar
  25. Kearn GC (1986) The eggs of monogeneans. Adv Parasitol 25:175–273.  https://doi.org/10.1016/S0065-308X(08)60344-9 CrossRefPubMedGoogle Scholar
  26. Khidr AA (1989) Observations on egg production in Cichlidogyrus halli typicus (Monogenea: Ancyrocephalinae). Delta J Sci 13(2):1145–1156Google Scholar
  27. Lara HH, Garza-Treviño EN, Ixtepan-Turrent L, Singh DK (2011) Silver nanoparticles are broad-spectrum bactericidal and virucidal compounds. J Nanobiotech 9(30):1–8Google Scholar
  28. Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribo JL, Arellano-Jiménez MJ, Yacaman MJ (2015) Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotech 13(91):2–12Google Scholar
  29. Leal JF, Neves MMS, Santos EBH, Esteves VI (2018) Use of formalin in intensive aquaculture: properties, application and effects on fish and water quality. Rev Aquac 10:281–295CrossRefGoogle Scholar
  30. Lee DL (1967) The structure and composition of the helminth cuticle. Adv Parasitol 4:187–254CrossRefGoogle Scholar
  31. Morales-Serna FN, Chapa-López M, Martínez-Brown JM, Ibarra-Castro L, Medina-Guerrero RM, Fajer-Ávila EJ (2018a) Efficacy of praziquantel and a combination anthelmintic (Adecto®) in bath treatments against Tagia ecuadori and Neobenedenia melleni (Monogenea), parasites of Bullseye puffer fish. Aquaculture 492:361–368CrossRefGoogle Scholar
  32. Morales-Serna FN, Medina-Guerrero RM, Pimentel-Acosta C, Ramírez-Tirado JH, Fajer-Ávila EJ (2018b) Parasite infections in farmed Nile tilapia Oreochromis niloticus in Sinaloa, Mexico. Comp Parasitol 85:212–216CrossRefGoogle Scholar
  33. Nguyen KC, Seligy VL, Massarsky A, Moon TW, Rippstein P, Tan J, Tayabali F (2013) Comparison of toxicity of uncoated and coated silver nanoparticles. J Phys Conf 429:429.  https://doi.org/10.1088/1742-6596/429/1/012025 CrossRefGoogle Scholar
  34. O’Neill JF, Johnston RC, Halferty L, Brennan GP, Fairweather I (2015) Ultrastructural changes in the tegument and gut of adult Fasciola hepatica following in vivo treatment with artesunate. Exp Parasitol 154:143–154.  https://doi.org/10.1016/j.exppara.2015.04.012 CrossRefPubMedGoogle Scholar
  35. Page AJ, Johnstone IL (2007) The cuticle WormBook.  https://doi.org/10.1895/wormbook.1.138.1,http://www.wormbook.org
  36. Reed P, Francis-Floyd R, Klinger R, Petty D (2012) Monogenean parasites of fish. Fisheries and aquatic sciences department, Florida Cooperative Extension Service, Institute of Food and Agricultural Sciences, University of Florida. http://edis.ifas.ufl.edu
  37. Resham S, Khalid M, Kazi AG (2015) Nanotechnology in agricultural development. In: Barh D, Khan M, Davies E (eds) PlantOmics: the omics of plant science. Springer, New Delhi, pp 683–698Google Scholar
  38. Rowland SJ, Nixon M, Landos M, Mifsud C, Read P, Boyd P (2006) Effects of formalin on water quality and parasitic monogeneans on silver perch (Bidyanus bidyanus Mitchell) in earthen ponds. Aquac Res 37:869–876CrossRefGoogle Scholar
  39. Saleh M, Abdel-Baki AA, Dkhil MA, El-Matbouli M, Al-Quraishy S (2017) Antiprotozoal effects of metal nanoparticles against Ichthyophthirius multifiliis. Parasitology 144:1802–1810CrossRefGoogle Scholar
  40. Sharma VK, Sayes CM, Guo B, Pillai S, Parsons JG, Wang C, Yan B, Ma X (2019) Interactions between silver nanoparticles and other metal nanoparticles under environmentally relevant conditions: a review. Sci Total Environ 653:1042–1051CrossRefGoogle Scholar
  41. Sivaramasamy E, Zhiwei W, Li F, Xiang J (2016) Enhancement of vibriosis resistance in Litopenaeus vannamei by supplementation of biomastered silver nanoparticles by Bacillus subtilis. J Nanomed Nanotechnol 7:352CrossRefGoogle Scholar
  42. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for gram-negative bacteria. J Colloid Interface Sci 275:177–182CrossRefGoogle Scholar
  43. Thoney DA, Hargis WJ (1991) Monogenea (Platyhelminthes) as hazards for fish in confinement. Annu Rev Fish Dis 1:133–153CrossRefGoogle Scholar
  44. Tomar RS, Preet S (2017) Evaluation of anthelmintic activity of biologically synthesized silver nanoparticles against the gastrointestinal nematode, Haemonchus contortus. J Helminthol 91:454–461CrossRefGoogle Scholar
  45. Toner E, Brennan GP, Wells K, McGeown JG, Fairweather I (2008) Physiological and morphological effects of genistein against the liver fluke, Fasciola hepatica. Parasitology 135:1189–1203.  https://doi.org/10.1017/S0031182008004630 CrossRefPubMedGoogle Scholar
  46. Vaseeharan B, Ramasamy P, Chen JC (2010) Antibacterial activity of silver nanoparticles (AgNps) synthesized by tea leaf extracts against pathogenic Vibrio harveyi and its protective efficacy on juvenile Feneropenaeus indicus. Lett Appl Microbiol 50:352–356CrossRefGoogle Scholar
  47. Wang Z, Wang Y, Yu C, Zhao Y, Fan M, Gao B (2018) The removal of silver nanoparticle by titanium tetrachloride and modified sodium alginate composite coagulants: floc properties, membrane fouling, and floc recycle. Environ Sci Pollut Res 25:21058–21069CrossRefGoogle Scholar
  48. Whittington ID (2005) Monogenea Monopisthocotylea (ectoparasitic flukes). In: Rohde K (ed) Marine parasitology. CSIRO Publishing, Collingwood, pp 63–72Google Scholar
  49. Whittington ID, Kearn GC (2011) Hatching strategies in monogenean (Platyhelminth) parasites that facilitate host infection. Symposium “Environmentally Cued Hatching Across Taxa” presented at the annual meeting of the Society for Integrative and Comparative Biology at Salt Lake City, Utah.  https://doi.org/10.1093/icb/icr003 CrossRefGoogle Scholar
  50. Zeng J, Xu P, Chen G, Zeng G, Chen A, Hu L, Huang Z, He K, Guo Z, Liu W, Wu J, Shi J (2019) Effects of silver nanoparticles with different dosing regimens and exposure media on artificial ecosystem. J Environ Sci 75:181–192CrossRefGoogle Scholar
  51. Zhang XP, Li WX, Ai TS, Zou H, Wu SG, Wang GT (2014) The efficacy of four common anthelmintic drugs and traditional Chinese medicinal plant extracts to control Dactylogyrus vastator (Monogenea). Aquaculture 420:302–307CrossRefGoogle Scholar
  52. Zhao C, Wang W (2012) Importance of surface coatings and soluble silver in silver nanoparticles toxicity to Daphnia magna. Nanotoxicology 6:361–370.  https://doi.org/10.3109/17435390.2011.579632 CrossRefPubMedGoogle Scholar
  53. Zhao K, Li S, Li W, Yu L, Duan X, Han J (2017) Quaternized chitosan nanoparticles loaded with the combined attenuated live vaccine against Newcastle disease and infectious bronchitis elicit immune response in chicken after intranasal administration. Drug Delivery 24:1574–1586CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  • Citlalic Altagracia Pimentel-Acosta
    • 1
  • Francisco Neptalí Morales-Serna
    • 2
  • María Cristina Chávez-Sánchez
    • 1
  • Humberto Herman Lara
    • 3
  • Alexey Pestryakov
    • 4
  • Nina Bogdanchikova
    • 5
  • Emma Josefina Fajer-Ávila
    • 1
    Email author
  1. 1.Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo AmbientalMazatlánMexico
  2. 2.CONACYT, Centro de Investigación en Alimentación y Desarrollo, A.C. Unidad Mazatlán en Acuicultura y Manejo AmbientalMazatlánMexico
  3. 3.Department of Biology and South Texas Center for Emerging Infectious DiseasesThe University of Texas at San AntonioSan AntonioUSA
  4. 4.Tomsk Polytechnic UniversityTomskRussia
  5. 5.Departamento de Fisicoquímica, Centro de Nanociencias y NanotecnologíaUniversidad Nacional Autónoma de MéxicoEnsenadaMexico

Personalised recommendations