Letter to the editor referencing “The apparent kleptoparasitism in fish-parasitic gnathiid isopods” 10.1007/s00436-018-6152-8

  • Serita van der WalEmail author
  • Joachim T. Haug
Fish Parasitology - Letter to the editor

General introduction

Parasitism is a type of interaction between two organisms in which one organism benefits from the other on the latter’s cost. Numerous sub-types of parasitism have been recognised, yet there is no concise, strict terminology available that provide a clear criteria for identifying between subtypes. For philosophical reasons, it might be impossible to provide such a frame (Minelli et al. 2006; Haug 2018). Still, it is worth discussing the use of certain terms for describing observed organismic interactions, just to avoid possible misunderstanding.

For this reason, it is necessary to comment on the applied terminology in a recent paper by Shodipo et al. (2018). The authors report on a unique case of interaction between conspecific isopodan crustaceans parasitising on fishes: parasitic gnathiid crustaceans feeding on the blood meal of other gnathiids. This observation is of crucial importance concerning the biological interaction, as it drastically expands the...



JTH is kindly funded by the Volkswagen Foundation with a Lichtenberg Professorship. We also thank C. Haug and J.M. Starck, both Munich, for the longstanding support.

Funding information

This study is funded by the Deutscher Akademischer Austauschdienst (DAAD; Research Grants–Doctoral Programmes in Germany, Reference no. 91693832, SvdW) and is hereby acknowledged.


  1. Artim JM, Sellers JC, Sikkel PC (2015) Micropredation by gnathiid isopods on settlement-stage reef fish in the eastern Caribbean Sea. Bull Mar Sci 91(4):479–487CrossRefGoogle Scholar
  2. Begon M, Townsend CR, Harper JL (2006) Ecology: from individuals to ecosystems. Blackwell Publications, MaldenGoogle Scholar
  3. Bertellotti M, Yorio P (2001) Intraspecific host selection by kleptoparasitic Kelp Gulls in Patagonia. Waterbirds 24(2):182–187CrossRefGoogle Scholar
  4. Cambridge Dictionary (2018) Cambridge University Press. Accessed 11.12.2018
  5. Carbone C, Frame L, Frame G, Malcolm J, Fanshawe J, FitzGibbon C, Schaller G, Gordon IJ, Rowcliffe JM, du Toit JT (2005) Feeding success of African wild dogs (Lycaon pictus) in the Serengeti: the effects of group size and kleptoparasitism. J Zool 266(2):153–161CrossRefGoogle Scholar
  6. Di Bitetti MS, Janson CH (2001) Social foraging and the finder’s share in capuchin monkeys, Cebus apella. Anim Behav 62(1):47–56CrossRefGoogle Scholar
  7. Dos Santos EB, Favretto MA, dos Santos Costa SG, Navarro-Silva MA (2016) Mites (Acari: Trombidiformes) parasitizing mosquitoes (Diptera: Culicidae) in an Atlantic Forest area in southern Brazil with a new mite genus country record. Exp Appl Acarol 69(3):323–333CrossRefGoogle Scholar
  8. English Oxford Living Dictionary (2018) Oxford University Press. Accessed 11.12.2018
  9. Haug JT (2018) Why the term “larva” is ambiguous, or what makes a larva? Acta Zool:1–22Google Scholar
  10. Helmy N, Khalil GM, Hoogstraal H (1983) Hyperparasitism in Ornithodoros erraticus. J Parasitol 69:229–233CrossRefGoogle Scholar
  11. Kirkness EF, Haas BJ, Sun WL, Braig HR, Perotti MA, Clark JM, Lee SH, Robertson HM, Kennedy RC, Elhaik E, Gerlach D, Kriventseva EV, Elsik CG, Graur D, Hill CA, Veenstra JA, Walenz B, Tubio JMC, Ribeiro JMC, Rozas J, Johnston JS, Reese JT, Popadic A, Tojo M, Raoult D, Reed DL, Tomoyasu Y, Kraus E, Mittapalli O, Margam VM, Li HM, Meyer JM, Johnson RM, Romero-Severson J, VanZee JP, Alvarez-Ponce D, Vieira FG, Aguade M, Guirao-Rico S, Anzola JM, Yoon KS, Strycharz JP, Unger MF, Christley S, Lobo NF, Seufferheld MJ, Wang N, Dasch GA, Struchiner CJ, Madey G, Hannick LI, Bidwell S, Joardar V, Caler E, Shao R, Barker SC, Cameron S, Bruggner RV, Regier A, Johnson J, Viswanathan L, Utterback TR, Sutton GG, Lawson D, Waterhouse RM, Venter JC, Strausberg RL, Berenbaum MR, Collins FH, Zdobnov EM, Pittendrigh BR (2010) Genome sequences of the human body louse and its primary endosymbiont provide insights into the permanent parasitic lifestyle. Proc Natl Acad Sci 107(27):12168–12173CrossRefGoogle Scholar
  12. Labruna MB, Pacheco RC, Nava S, Brandão PE, Richtzenhain LJ, Guglielmone AA (2007) Infection by Rickettsia bellii and CandidatusRickettsia amblyommii” in Amblyomma neumanni ticks from Argentina. Microb Ecol 54(1):126–133CrossRefGoogle Scholar
  13. Levinton JS (2014) Marine biology: function, biodiversity, ecology. Oxford University Press, New YorkGoogle Scholar
  14. Lovrich GA, Roccatagliata D, Peresan L (2004) Hyperparasitism of the cryptoniscid isopod Liriopsis pygmaea on the lithodid Paralomis granulosa from the Beagle Channel, Argentina. Dis Aquat Org 58(1):71–77Google Scholar
  15. Martin E, Hine RS (2008) A dictionary of biology, 6th edn. Oxford University Press, New YorkGoogle Scholar
  16. Minelli A, Brena C, Deflorian G, Maruzzo D, Fusco G (2006) From embryo to adult—beyond the conventional periodization of arthropod development. Dev Genes Evol 216(7–8):373–383CrossRefGoogle Scholar
  17. Olsen OW (1974) Animal parasites: their life cycles and ecology. University Park Press, BaltimoreGoogle Scholar
  18. Penfold R, Grutter AS, Kuris AM, McCormick MI, Jones CM (2008) Interactions between juvenile marine fish and gnathiid isopods: predation versus micropredation. Mar Ecol Prog Ser 357:111–119CrossRefGoogle Scholar
  19. Price PW, Westoby M, Rice B, Atsatt PR, Fritz RS, Thompson JN, Mobley K (1986) Parasite mediation in ecological interactions. Annu Rev Ecol Evol Syst 17(1):487–505CrossRefGoogle Scholar
  20. Resource (n.d.) In Merriam-Webster Online. Retrieved: December 2018.
  21. Rohde K (2005) Marine parasitology. CSIRO Publishing, MelbourneCrossRefGoogle Scholar
  22. Sanogo YO, Dobson SL (2004) Molecular discrimination of Wolbachia in the Culex pipiens complex: evidence for variable bacteriophage hyperparasitism. Insect Mol Biol 13(4):365–369CrossRefGoogle Scholar
  23. Schoonhoven LM, Van Loon B, van Loon JJ, Dicke M (2005) Insect-plant biology, 2nd edn. Oxford University Press, OxfordGoogle Scholar
  24. Shodipo MO, Gomez RDC, Welicky RL, Sikkel PC (2018) Apparent kleptoparasitism in fish—parasitic gnathiid isopods. Parasitol Res:1–3Google Scholar
  25. Sikkel PC, Schaumburg CS, Mathenia JK (2006) Diel infestation dynamics of gnathiid isopod larvae parasitic on Caribbean reef fish. Coral Reefs 25(4):683–689CrossRefGoogle Scholar
  26. Sivinski J, Marshall S, Petersson E (1999) Kleptoparasitism and phoresy in the Diptera. Fla Entomol 82(2):179–197CrossRefGoogle Scholar
  27. Smith TM, Smith RL (1999) Elements of Ecology, 4th edn. Calif Benjamin Cummings, Menlo ParkGoogle Scholar
  28. Sullivan DJ (1987) Insect hyperparasitism. Annu Rev Entomol 32(1):49–70CrossRefGoogle Scholar
  29. Taylor AE (1926) World food resources. Foreign Aff 5(1):18–32CrossRefGoogle Scholar
  30. Tu JC, Vaartaja O (1981) The effect of the hyperparasite (Gliocladium virens) on Rhizoctonia solani and on Rhizoctonia root rot of white beans. Can J Bot 59(1):22–27CrossRefGoogle Scholar
  31. Tylianakis JM, Tscharntke T, Klein AM (2006) Diversity, ecosystem function, and stability of parasitoid–host interactions across a tropical habitat gradient. Ecology 87(12):3047–3057CrossRefGoogle Scholar
  32. Werblow A, Martin P, Dörge DD, Koch LK, Mehlhorn H, Melaun C, Klimpel S (2015) Hyperparasitism of mosquitoes by water mite larvae. Parasitol Res 114(7):2757–2765CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Zoomorphology group, Department of Biology IILudwig-Maximilians-Universität MünchenPlaneggGermany
  2. 2.GeoBio-CenterLudwig-Maximilians-Universität MünchenMunichGermany

Personalised recommendations