Abstract
Trypanosoma carassii is a flagellated bloodstream parasite of cyprinid fish with pathogenesis manifesting primarily as anemia in experimentally infected fish. This anemia is characterized by decreases in the number of circulating red blood cells (RBCs) during peak parasitemia. We examined changes in the key blood metrics and expression of genes known to be important in the regulation of erythropoiesis. Increasing parasitemia was strongly correlated with an overall decrease in the total number of circulating RBCs. Gene expression of key erythropoiesis regulators (EPO, EPOR, GATA1, Lmo2, and HIFα) and proinflammatory cytokines (IFNγ and TNFα) were measured and their expressions differed from those in fish made anemic by injections of phenylhydrazine (PHZ). Significant upregulation of pro-erythropoietic genes was observed in PHZ-induced anemia, but not during peak parasitic infection. Previously, we reported on functional characterization of goldfish erythropoietin (rgEPO) and its ability to induce survival and differentiation of erythroid progenitor cells in vitro. Treatment of goldfish during the infection with rgEPO reduced the severity of anemia but failed to fully prevent the onset of the anemic state in infected fish. Proinflammatory cytokines have been implicated in the suppression of erythropoiesis during trypanosomiasis, specifically the cytokines TNFα, IFNγ, and IL-1β. Analysis of key proinflammatory cytokines revealed that mRNA levels of IFNγ and TNFα were upregulated in response to infection, but only TNFα increased in response to PHZ treatment. Synergistic activity of the proinflammatory cytokines may be required to sustain prolonged anemia. These findings provide insight into the relationship between T. carassii and host anemia and suggest that T. carassii may directly or indirectly suppress host erythropoiesis.










Similar content being viewed by others
Explore related subjects
Discover the latest articles and news from researchers in related subjects, suggested using machine learning.References
Agüero F, Campo V, Cremona L, Jäger A, Noia JMD, Overath P, Sánchez DO, Frasch AC (2002) Gene discovery in the freshwater fish parasite Trypanosoma carassii: identification of trans-Sialidase-like and mucin-like genes. Infect Immun 70:7140–7144. https://doi.org/10.1128/IAI.70.12.7140-7144.2002
Andrews NW (1990) The acid-active hemolysin of Trypanosoma cruzi. Exp Parasitol 71:241–244
Andrews NW, Whitlow MB (1989) Secretion by Trypanosoma cruzi of a hemolysin active at low pH. Mol Biochem Parasitol 33:249–256. https://doi.org/10.1016/0166-6851(89)90086-8
Berger J (2007) Phenylhydrazine haematotoxicity. J Appl Biomed Gruyter Open 5:125–130
Bezie M (2014) African trypanosomes: virulence factors, pathogenicity and host responses. J Vet Adv 4:732–745
Bienek DR, Belosevic M (1999) Macrophage or fibroblast-conditioned medium potentiates growth of Trypanosoma danilewskyi Laveran & Mesnil 1904. J Fish Dis 22:359–367. https://doi.org/10.1046/j.1365-2761.1999.00184.x
Bienek DR, Plouffe DA, Wiegertjes GF, Belosevic M (2002) Immunization of goldfish with excretory/secretory molecules of Trypanosoma danilewskyi confers protection against infection. Dev Comp Immunol 26:649–657. https://doi.org/10.1016/S0145-305X(02)00018-6
Brandt SJ, Koury MJ (2009) Regulation of LMO2 mRNA and protein expression in erythroid differentiation. Haematologica 94:447–448. https://doi.org/10.3324/haematol.2008.005140
Chamond N, Cosson A, Blom-Potar MC, Jouvion G, D’Archivio S, Medina M, Droin-Bergère S, Huerre M, Goyard S, Minoprio P (2010) Trypanosoma vivax infections: pushing ahead with mouse models for the study of Nagana. I. Parasitological, hematological and pathological parameters. PLoS Negl Trop Dis 4:e792. https://doi.org/10.1371/journal.pntd.0000792
Chang K-H, Tam M, Stevenson MM (2004) Modulation of the course and outcome of blood-stage malaria by erythropoietin-induced reticulocytosis. J Infect Dis 189:735–743
Chou C-F, Tohari S, Brenner S, Venkatesh B (2004) Erythropoietin gene from a teleost fish, Fugu rubripes. Blood 104:1498–1503. https://doi.org/10.1182/blood-2003-10-3404
Chu C-Y, Cheng C-H, Chen G-D, Chen Y-C, Hung C-C, Huang K-Y, Huang C-J (2007) The zebrafish erythropoietin: functional identification and biochemical characterization. FEBS Lett 581:4265–4271. https://doi.org/10.1016/j.febslet.2007.07.073
Chu C-Y, Cheng C-H, Yang C-H, Huang C-J (2008) Erythropoietins from teleosts. Cell Mol Life Sci 65:3545–3552. https://doi.org/10.1007/s00018-008-8231-y
Cooper AC, Mikhail A, Lethbridge MW, Kemeny DM, Macdougall IC (2003) Increased expression of erythropoiesis inhibiting cytokines (IFN-γ, TNF-α, IL-10, and IL-13) by T cells in patients exhibiting a poor response to erythropoietin therapy. J Am Soc Nephrol 14:1776–1784. https://doi.org/10.1097/01.ASN.0000071514.36428.61
Corrêa LL, Oliveira MSB, Tavares-Dias M, Ceccarelli PS, Corrêa LL, Oliveira MSB, Tavares-Dias M, Ceccarelli PS (2016) Infections of Hypostomus spp. by Trypanosoma spp. and leeches: a study of hematology and record of these hirudineans as potential vectors of these hemoflagellates. Rev Bras Parasitol Vet 25:299–305. https://doi.org/10.1590/S1984-29612016049
Dyková I, Lom J (1979) Histopathological changes in Trypanosoma danilewskyi Laveran & Mesnil, 1904 and Trypanoplasma borelli Laveran & Mesnil, 1902 infections of goldfish, Carassiw auratus (L.). J Fish Dis 2:381–390. https://doi.org/10.1111/j.1365-2761.1979.tb00390.x
Eckardt K-U, Kurtz A (2005) Regulation of erythropoietin production. Eur J Clin Investig 35:13–19. https://doi.org/10.1111/j.1365-2362.2005.01525.x
Elliott S, Pham E, Macdougall IC (2008) Erythropoietins: a common mechanism of action. Exp Hematol 36:1573–1584. https://doi.org/10.1016/j.exphem.2008.08.003
Galloway JL, Wingert RA, Thisse C, Thisse B, Zon LI (2005) Loss of gata1 but not gata2 converts erythropoiesis to myelopoiesis in zebrafish embryos. Dev Cell 8:109–116. https://doi.org/10.1016/j.devcel.2004.12.001
Ghosh A, Halpern ME (2016) Chapter 10 - transcriptional regulation using the Q system in transgenic zebrafish. In: William Detrich H, Westerfield M, Zon LI (eds) Methods in cell biology, the zebrafish. Academic Press, pp 205–218. https://doi.org/10.1016/bs.mcb.2016.05.001
Groff JM, Zinkl JG (1999) Hematology and clinical chemistry of cyprinid fish: common carp and goldfish. Vet Clin North Am Exot Anim Pract, Clin Pathol Sample Collection 2:741–776. https://doi.org/10.1016/S1094-9194(17)30120-2
Habila N, Inuwa MH, Aimola IA, Udeh MU, Haruna E (2012) Pathogenic mechanisms of Trypanosoma evansi infections. Res Vet Sci 93:13–17. https://doi.org/10.1016/j.rvsc.2011.08.011
Hayes PM, Lawton SP, Smit NJ, Gibson WC, Davies AJ (2014) Morphological and molecular characterization of a marine fish trypanosome from South Africa, including its development in a leech vector. Parasit Vectors 7:1–11. https://doi.org/10.1186/1756-3305-7-50
Hilali M, Abdel-Gawad A, Nassar A, Abdel-Wahab A (2006) Hematological and biochemical changes in water buffalo calves (Bubalus bubalis) infected with Trypanosoma evansi. Vet Parasitol 139:237–243. https://doi.org/10.1016/j.vetpar.2006.02.013
Hodgkinson JW, Fibke C, Belosevic M (2017) Recombinant IL-4/13A and IL-4/13B induce arginase activity and down-regulate nitric oxide response of primary goldfish (Carassius auratus L.) macrophages. Dev Comp Immunol 67:377–384. https://doi.org/10.1016/j.dci.2016.08.014
Houston AH, Murad A (1992) Erythrodynamics in goldfish, Carassius auratus L.: temperature effects. Physiol Zool 65:55–76
Houston AH, Murad A (1995) Erythrodynamics in fish: recovery of the goldfish Carassius auratus from acute anemia. Can J Zool 73:411–418. https://doi.org/10.1139/z95-046
Islam AKMN, Woo PTK (1991) Anemia and its mechanism in goldfish Carassius auratus infected with Trypanosoma danilewskyi. Dis Aquat Org 11:37–43
Jelkmann W (1998) Proinflammatory cytokines lowering erythropoietin production. J Interf Cytokine Res 18:555–559. https://doi.org/10.1089/jir.1998.18.555
Jelkmann W (2004) Molecular biology of erythropoietin. Intern Med 43:649–659. https://doi.org/10.2169/internalmedicine.43.649
Katakura F, Katzenback BA, Belosevic M (2013) Molecular and functional characterization of erythropoietin of the goldfish (Carassius auratus L.). Dev Comp Immunol 40:148–157. https://doi.org/10.1016/j.dci.2013.02.007
Khan RA, Barrett M, Campbell J (1980) Trypanosoma murmanensis: ITS EFFECTS ON THE LONGHORN SCULPIN, Myoxocephalus octodecemspinosus. J Wildl Dis 16:359–361. https://doi.org/10.7589/0090-3558-16.3.359
Krasnov A, Timmerhouse G, Afanasyev S, Takle H, Jorgensen SM (2013) Induced erythropoiesis during acute anemia in Atlantic salmon: a transcriptomic study. Gen Comp Edocrinol 192:181–190. https://doi.org/10.1016/jygcen.2013.04.026
Langousis G, Hill KL (2014) Motility and more: the flagellum of Trypanosoma brucei. Nat Rev Microbiol 12:505–518. https://doi.org/10.1038/nrmicro3274
Latunde-Dada GO, Vulpe CD, Anderson GJ, Simpson RJ, McKie AT (2004) Tissue-specific changes in iron metabolism genes in mice following phenylhydrazine-induced haemolysis. Biochim Biophys Acta (BBA) - Mol Basis Dis 1690:169–176. https://doi.org/10.1016/j.bbadis.2004.06.011
Magez S, Radwanska M, Beschin A, Sekikawa K, Baetselier PD (1999) Tumor necrosis factor alpha is a key mediator in the regulation of experimental Trypanosoma brucei infections. Infect Immun 67:3128–3132
Marsh WA, Rascati KL (1999) Meta-analyses of the effectiveness of erythropoietin for end-stage renal disease and cancer. Clin Ther 21:1443–1455. https://doi.org/10.1016/S0149-2918(00)80003-X
Morrison LJ, McLellan S, Sweeney L, Chan CN, MacLeod A, Tait A, Turner CMR (2010) Role for parasite genetic diversity in differential host responses to Trypanosoma brucei infection. Infect Immun 78:1096–1108. https://doi.org/10.1128/IAI.00943-09
Murad A (1990) Haematological response to reduced oxygen-carrying capacity, increased temperature and hypoxia in goldfish, Carassius auratus L. J Fish Biol 36:289–305
Murad A, Houston AH (1992) Maturation of the goldfish (Carassius auratus) erythrocyte. Comp Biochem Physiol A Physiol 102:107–110. https://doi.org/10.1016/0300-9629(92)90019-M
Nairz M, Sonnweber T, Schroll A, Theurl I, Weiss G (2012) The pleiotropic effects of erythropoietin in infection and inflammation. Microbes Infect 14:238–246. https://doi.org/10.1016/j.micinf.2011.10.005
Nishimura K, Nakaya H, Nakagawa H, Matsuo S, Ohnishi Y, Yamasaki S (2011) Effect of Trypanosoma brucei brucei on erythropoiesis in infected rats. J Parasitol 97:88–93. https://doi.org/10.1645/GE-2522.1
Nogawa-Kosaka N, Hirose T, Kosaka N, Aizawa Y, Nagasawa K, Uehara N, Miyazaki H, Komatsu N, Kato T (2010) Structural and biological properties of erythropoietin in Xenopus laevis. Exp Hematol 38:363–372. https://doi.org/10.1016/j.exphem.2010.02.009
Nogawa-Kosaka N, Sugai T, Nagasawa K, Tanizaki Y, Meguro M, Aizawa Y, Maekawa S, Adachi M, Kuroki R, Kato T (2011) Identification of erythroid progenitors induced by erythropoietic activity in Xenopus laevis. J Exp Biol 214:921–927. https://doi.org/10.1242/jeb.050286
Noyes HA, Alimohammadian MH, Agaba M, Brass A, Fuchs H, Gailus-Durner V, Hulme H, Iraqi F, Kemp S, Rathkolb B, Wolf E, de Angelis MH, Roshandel D, Naessens J (2009) Mechanisms controlling anaemia in Trypanosoma congolense infected mice. PLoS One 4:e5170. https://doi.org/10.1371/journal.pone.0005170
Oladiran A, Belosevic M (2012) Immune evasion strategies of trypanosomes: a review. J Parasitol 98:284–292. https://doi.org/10.1645/GE-2925.1
Oladiran A, Beauparlant D, Belosevic M (2011) The expression analysis of inflammatory and antimicrobial genes in the goldfish (Carassius auratus L.) infected with Trypanosoma carassii. Fish Shellfish Immunol 31:606–613. https://doi.org/10.1016/j.fsi.2011.07.008
Overath P, Ruoff J, Stierhof Y-D, Haag J, Tichy H, Dyková I, Lom J (1998) Cultivation of bloodstream forms of Trypanosoma carassii, a common parasite of freshwater fish. Parasitol Res 84:343–347. https://doi.org/10.1007/s004360050408
Paim FC, Duarte MMMF, Costa MM, Da Silva AS, Wolkmer P, Silva CB, Paim CBV, França RT, Mazzanti CMA, Monteiro SG, Krause A, Lopes STA (2011) Cytokines in rats experimentally infected with Trypanosoma evansi. Exp Parasitol 128:365–370. https://doi.org/10.1016/j.exppara.2011.04.007
Qadri SS (1962) An experimental study of the life cycle of Trypanosoma danilewskyi in the leech, Hemiclepsis marginata.*. J Protozool 9:254–258. https://doi.org/10.1111/j.1550-7408.1962.tb02614.x
Ransom DG, Haffter P, Odenthal J, Brownlie A, Vogelsang E, Kelsh RN, Brand M, van Eeden FJ, Furutani-Seiki M, Granato M, Hammerschmidt M, Heisenberg CP, Jiang YJ, Kane DA, Mullins MC, Nusslein-Volhard C (1996) Characterization of zebrafish mutants with defects in embryonic hematopoiesis. Development 123:311–319
Simonot DL, Farrell AP (2007) Cardiac remodelling in rainbow trout Oncorhynchus mykiss Walbaum in response to phenylhydrazine-induced anaemia. J Exp Biol 210:2574–2584. https://doi.org/10.1242/jeb.004028
Stijlemans B, Beschin A, Magez S, Ginderachter VAJ, De Baetselier P (2015) Iron homeostasis and Trypanosoma brucei associated immunopathogenicity development: a battle/quest for iron [WWW document]. Biomed Res Int 2015:1–15. https://doi.org/10.1155/2015/819389
Suliman HB, Logan-Henfrey L, Majiwa PA, ole-Moiyoi O, Feldman BF (1999) Analysis of erythropoietin and erythropoietin receptor genes expression in cattle during acute infection with Trypanosoma congolense. Exp Hematol 27:37–45
Suzuki T, Ueta YY, Inoue N, Xuan X, Saitoh H, Suzuki H (2006) Beneficial effect of erythropoietin administration on murine infection with Trypanosoma congolense. Am J Trop Med Hyg 74:1020–1025. https://doi.org/10.4269/ajtmh.2006.74.1020
Tizard I, Nielsen KH, Seed JR, Hall JE (1978) Biologically active products from African Trypanosomes. Microbiol Rev 42:664–681
Witeska M (2013) Erythrocytes in teleost fishes: a review. Zool Ecol 23:275–281. https://doi.org/10.1080/21658005.2013.846963
Woo PTK, Ardelli BF (2014) Immunity against selected piscine flagellates. Dev Comp Immunol 43:268–279. https://doi.org/10.1016/j.dci.2013.07.006
Xiao B, Chen Y-S, Cheng T (2017) Experimental study on EPO treatment of model rats with infection-induced acute liver injury. J Acute Dis 6:126–130. https://doi.org/10.12980/jad.6.2017JADWEB-2017-0016
Author information
Authors and Affiliations
Corresponding author
Additional information
Section Editor: Marta Teixeira
Publisher’s note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
ESM 1
(DOCX 5122 kb)
Rights and permissions
About this article
Cite this article
McAllister, M., Phillips, N. & Belosevic, M. Trypanosoma carassii infection in goldfish (Carassius auratus L.): changes in the expression of erythropoiesis and anemia regulatory genes. Parasitol Res 118, 1147–1158 (2019). https://doi.org/10.1007/s00436-019-06246-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00436-019-06246-5


