Abstract
Cystic echinococcosis (CE) of humans and animals is caused by various species of Echinococcus granulosus sensu lato. Of these, E. granulosus sensu stricto has the widest geographical distribution and is the most important agent of human cystic echinococcosis. Previous molecular studies showed that E. granulosus s.s. isolates from the Middle East and western Asia exhibit higher intraspecific diversity than those from other parts of the world, which led to hypotheses on the origin of the species in that region. However, various high-endemicity regions have not been sufficiently covered by such studies, including northern Africa as a well-known focus of this parasite. Here, we report data on the mitochondrial cox1 gene (1609bp) sequence diversity of E. granulosus s.s. from Algerian livestock. An abattoir survey of 1278 animals from the Algerian steppe region (Djelfa) resulted in CE prevalence of 13.9% in cattle (n = 266), 5.7% in sheep (n = 975), and 0% in goats (n = 37). All of 125 molecularly examined cyst isolates belonged to E. granulosus s.s. In total, 73 haplotypes were found, only five of which have been previously reported (from the Middle East and Australia). One haplotype sequence (EgAlg01X) was found to contain an insertion of three bases at the end of the gene. To the best of our knowledge, this has not been reported before for Echinococcus spp. Diversity values of our panel of Algerian samples were in the range of those that have been previously reported from the Middle East and far higher than those from elsewhere. This, together with the low number of shared haplotypes, indicates a more complex biogeographical history of this parasite than hitherto assumed.
Access this article
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.
Similar content being viewed by others
References
Alvarez Rojas CA, Romig T, Lightowlers MW (2014) Echinococcus granulosus sensu lato genotypes infecting humans – review of current knowledge. Int J Parasitol 44:9–18. https://doi.org/10.1016/j.ijpara.2013.08.008
Alvarez Rojas CA, Ebi D, Gauci CG, Scheerlinck JP, Wassermann M, Jenkins DJ, Lightowlers MW, Romig T (2016) Microdiversity of Echinococcus granulosus sensu stricto in Australia. Parasitology 143:1026–1033. https://doi.org/10.1017/S0031182016000445
Alvarez Rojas CA, Ebi D, Paredes R, Acosta-Jamett G, Urriola N, Roa JC, Manterola C, Cortes S, Romig T, Scheerlinck JP, Lightowlers MW (2017) High intraspecific variability of Echinococcus granulosus sensu stricto in Chile. Parasitol Int 66:112–115. https://doi.org/10.1016/j.parint.2016.12.001
Bardonnet K, Benchikh-Elfegoun MC, Bart JM, Harraga S, Hannache N, Haddad S, Dumon H, Vuitton DA, Piarroux R (2003) Cystic echinococcosis in Algeria: cattle act reservoirs of a sheep strain and may contribute to human contamination. Vet Parasitol 116:35–44. https://doi.org/10.1016/S0304-4017(03)00255-3
Benchikh-Elfegoun MC, Benakhla A, Bentounsi B, Bererhi H, Sfaksi A, Dumon H, Piarroux R (2008) Evaluation de l'infestation par Echinococcus granulosus des chiens par le test E.L.I.S.A. Sci Technol 27:15–22
Bentounsi B, Meradi S, Ayachi A, Cabaret J (2009) Cestodes of untreated large stray dog populations in Algeria: a reservoir for herbivore and human parasitic diseases. Open Vet Sci J 3:64–67. https://doi.org/10.2174/1874318809003010064
Bowles J, Blair D, McManus DP (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 54:165–173. https://doi.org/10.1016/0166-6851(92)90109-W
Cardona GA, Carmena D (2013) A review of the global prevalence, molecular epidemiology and economics of cystic echinococcosis in production animals. Vet Parasitol 192:10–32. https://doi.org/10.1016/j.vetpar.2012.09.027
Clement M, Posada D, Crandall KA (2000) TCS: a computer program to estimate gene genealogies. Mol Ecol 9:1657–1659. https://doi.org/10.1046/j.1365-294x.2000.01020.x
Dakkak A (2010) Echinococcosis/hydatidosis: a severe threat in Mediterranean countries. Vet Parasitol 174:2–11. https://doi.org/10.1016/j.vetpar.2010.08.009
Deplazes P, Rinaldi L, Alvarez Rojas CA, Torgerson PR, Harandi MF, Romig T, Antolova D, Schurer JM, Lahmar S, Cringoli G, Magambo J, Thompson RCA, Jenkins EJ (2017) Global distribution of alveolar and cystic echinococcosis. Adv Parasitol 95:315–493. https://doi.org/10.1016/bs.apar.2016.11.001
Gemmell MA (2000) Australasian contributions to an understanding of the epidemiology and control of hydatid disease caused by Echinococcus granulosus—past, present and future. Int J Parasitol 20:431–456. https://doi.org/10.1016/0020-7519(90)90192-P
Gifford-Gonzalez D, Hanotte O (2011) Domesticating animals in Africa: implications of genetic and archaeological findings. J World Prehist 24:1–23. https://doi.org/10.1007/s10963-010-9042-2
Groeneveld LF, Lenstra JA, Eding H, Toro MA, Scherf B, Pilling D, Negrini R, Finlay EK, Jianlin H, Groeneveld E, Weigend S, The GLOBALDIV Consortium (2010) Genetic diversity in farm animals – a review. Anim Genet 41(Suppl. 1):6–31. https://doi.org/10.1111/j.1365-2052.2010.02038.x
Hamrat K, Achour Y, Yacin G, Cozma V (2011a) Epidemiologic study of hydatidosis in the steppe regions of Djelfa, Algeria. Sci Parasitol 12:177–183
Hamrat K, Achour Y, Benhousse A, Cozma V (2011b) Study of the prevalence of Echinococcus granulosus in the south of Algeria (as in the ADRAR region). Sci Parasitol 12:219–221
Ito A, Dorjsuren T, Davaasuren A, Yanagida T, Sako Y, Nakaya K, Nakao M, Bat-Ochir OE, Ayushkhuu T, Bazarragchaa N, Gonchigsengee N, Li T, Agvaandaram G, Davaajav A, Boldbaatar C, Chuluunbaatar G (2014) Cystic echinococcoses in Mongolia: molecular identification, serology and risk factors. PLoS Negl Trop Dis 8:e2937. https://doi.org/10.1371/journal.pntd.0002937
Kinkar L, Laurimäe T, Simsek S, Balkaya I, Casulli A, Manfredi MT, Ponce-Gordo F, Varcasia A, Lavikainen A, González LM, Rehbein S, van der Giessen J, Sprong H, Saarma U (2016) High-resolution phylogeography of zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1 with an emphasis on its distribution in Turkey, Italy and Spain. Parasitology 143:1790–1801. https://doi.org/10.1017/S0031182016001530
Kinkar L, Laurimäe T, Sharbatkhori M, Mirhendi H, Kia EB, Ponce-Gordo F, Andresiuk V, Simsek S, Lavikainen A, Irshadullah M, Umhang G, Oudni-M'rad M, Acosta-Jamett G, Rehbein S, Saarma U (2017) New mitogenome and nuclear evidence on the phylogeny and taxonomy of the highly zoonotic tapeworm Echinococcus granulosus sensu stricto. Infect Genet Evol 52:52–58. https://doi.org/10.1016/j.meegid.2017.04.023
Kinkar L, Laurimäe T, Acosta-Jamett G, Andresiuk V, Balkaya I, Casulli A, Gasser RB, van der Giessen J, González LM, Haag KL, Zait H, Irshadullah M, Jabbar A, Jenkins DJ, Kia EB, Manfredi MT, Mirhendi H, M’rad S, Rostami-Nejad M, Oudni-M’rad M, Pierangeli NB, Ponce-Gordo F, Rehbein S, Sharbatkhori M, Simsek S, Soriano SV, Sprong H, Šnábel V, Umhang G, Varcasia A, Saarma U (2018) Global phylogeography and genetic diversity of the zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1. Int J Parasitol 48:729–742. https://doi.org/10.1016/j.ijpara.2018.03.006
Konyaev SV, Yanagida T, Ingovatova GM, Shoikhet YN, Nakao M, Sako Y, Bondarev AY, Ito A (2012) Molecular identification of human echinococcosis in the Altai region of Russia. Parasitol Int 61:711–714. https://doi.org/10.1016/j.parint.2012.05.009
Konyaev SV, Yanagida T, Nakao M, Ingovatova GM, Shoykhet YN, Bondarev AY, Odnokurtsev VA, Loskutova KS, Lukmanova GI, Dokuchaev NE, Spiridonov S, Alshinecky MV, Sivkova TN, Andreyanov ON, Abramov SA, Krivopalov AV, Karpenko SV, Lopatina NV, Dupal TA, Sako Y, Ito A (2013) Genetic diversity of Echinococcus spp. in Russia. Parasitology 140:1637–1647. https://doi.org/10.1017/S0031182013001340
Kouidri M, Benchaib-Khoudja F, Boulkaboul A, Selles M (2012) Prevalence, fertility and viability of cystic echinococcosis in sheep and cattle of Algeria. Bulgarian J Vet Med 15:191–197
Kouidri M, Benchaib-Khoudja F, Boulkaboul A, Selles SMA (2013) Cystic echinococcosis in small ruminants in Tiaret (Algeria). Global Veterinaria 11:753–758. https://doi.org/10.5829/idosi.gv.2013.11.6.76139
Laurimäe T, Kinkar L, Andresiuk V, Haag KL, Ponce-Gordo F, Acosta-Jamett G, Garate T, Gonzàlez LM, Saarma U (2016) Genetic diversity and phylogeography of highly zoonotic Echinococcus granulosus genotype G1 in the Americas (Argentina, Brazil, Chile and Mexico) based on 8279bp of mtDNA. Infect Genet Evol 45:290–296. https://doi.org/10.1016/j.meegid.2016.09.015
Librado P, Rozas J (2009) DnaSP v5: a software for comprehensive analysis of DNA polymorphism data. Bioinformatics 25:1451–1452. https://doi.org/10.1093/bioinformatics/btp187
Maillard S, Benchikh-Elfegoun MC, Knapp J, Bart JM, Koskei P, Gottstein B, Piarroux R (2007) Taxonomic position and geographical distribution of the common sheep G1 and camel G6 strains of Echinococcus granulosus in three African countries. Parasitol Res 100:495–503. https://doi.org/10.1007/s00436-006-0286-9
Muigai AWT, Hanotte O (2013) The origin of African sheep: archaeological and genetic perspectives. Afr Archaeol Rev 30:39–50. https://doi.org/10.1007/s10437-013-9129-0
Nakao M, Sako Y, Ito A (2003) Isolation of polymorphic microsatellite loci from the tapeworm Echinococcus multilocularis. Infect Genet Evol 3:159–163. https://doi.org/10.1016/S1567-1348(03)00070-4
Nakao M, Lavikainen A, Yanagida T, Ito A (2013) Phylogenetic systematics of the genus Echinococcus (Cestoda: Taeniidae). Int J Parasitol 43:1017–1029. https://doi.org/10.1016/j.ijpara.2013.06.002
Ouchene N, Bitam I, Zeroual F, Ouchene-Khelifi NA (2014) Cystic echinococcosis in wild boars (Sus scrofa) and slaughtered domestic ruminants in Algeria. Asian J Anim Vet Adv 9:767–774. https://doi.org/10.3923/ajava.2014.767.774
Rannamäe E, Lõugas L, Niemi M, Kantanen J, Maldre L, Kadõrova N, Saarma U (2016) Maternal and paternal genetic diversity of ancient sheep in Estonia from the Late Bronze Age to the post-medieval period and comparison with other regions in Eurasia. Anim Genet 47:208–218. https://doi.org/10.1111/age.12407
Romig T, Ebi D, Wassermann M (2015) Taxonomy and molecular epidemiology of Echinococcus granulosus sensu lato. Vet Parasitol 213:76–84. https://doi.org/10.1016/j.vetpar.2015.07.035
Romig T, Deplazes P, Jenkins D, Giraudoux P, Massolo A, Craig PS, Wassermann M, Takahashi K, de la Rue M (2017) Ecology and life cycle patterns of Echinococcus species. Adv Parasitol 95:213–314. https://doi.org/10.1016/bs.apar.2016.11.002
Sadjjadi SM (2006) Present situation of echinococcosis in the Middle East and Arabic North Africa. Parasitol Int 55(Suppl):S197–S202. https://doi.org/10.1016/j.parint.2005.11.030
Yanagida T, Mohammadzadeh T, Kamhawi S, Nakao M, Sadjjadi SM, Hijjawi N, Abdel-Hafez SK, Sako Y, Okamoto M, Ito A (2012) Genetic polymorphisms of Echinococcus granulosus sensu stricto in the Middle East. Parasitol Int 61:599–603. https://doi.org/10.1016/j.parint.2012.05.014
Zait H, Kouidri M, Grenouillet FE, Umhang G, Millon L, Hamrioui B, Grenouillet F (2016) Molecular characterization of Echinococcus granulosus sensu stricto and Echinococcus canadensis in humans and livestock from Algeria. Parasitol Res 115:2423–2431. https://doi.org/10.1007/s00436-016-4994-5
Acknowledgements
The authors thank the responsible veterinarian at the Djelfa slaughterhouse for his support and participation during the sampling of material. The presence of insertion TGC within haplotype EgAlg01X was confirmed by Dr. Belgees Boufana at the Italian National Institute of Health, Department of Infectious Diseases, Rome, Italy.
Funding
Parts of this work were financially supported by Deutsche Forschungsgemeinschaft (DFG), project CESSARi (Ro 3753/2-1, 3-1).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
The authors declare that they have no conflict of interest.
Additional information
Handling Editor: Julia Walochnik
Electronic supplementary material
ESM 1
(PDF 655 kb)
Rights and permissions
About this article
Cite this article
Laatamna, A., Ebi, D., Brahimi, K. et al. Frequency and genetic diversity of Echinococcus granulosus sensu stricto in sheep and cattle from the steppe region of Djelfa, Algeria. Parasitol Res 118, 89–96 (2019). https://doi.org/10.1007/s00436-018-6118-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00436-018-6118-x