In silico analysis of endogenous siRNAs associated transposable elements and NATs in Schistosoma japonicum reveals their putative roles during reproductive development

Original Paper


Schistosomiasis is a neglected tropical disease caused by trematode of the genus Schistosoma. Successful reproductive development is critical for the production of eggs, which are responsible for host pathology and disease dissemination. Endogenous small non-coding RNAs play important roles in many biological processes such as protection against foreign pathogens, cell differentiation, and chromosomal stability by regulating target gene expression at the transcriptional and post-transcriptional levels. In this study, we performed in silico analysis of endogenous small non-coding RNAs in different stages, and sex of S. japonicum focusing on endogenous small interfering RNAs (endo-siRNAs) generated from transposable elements (TEs) and natural antisense transcripts (NATs). Both total and unique siRNA populations show 18–30 nt in length, but the predominant size was 20 nt and the leading first base was adenosine. Sense TE-derived endo-siRNAs reads were higher than antisense reads at different relative positions of TEs, whereas no such difference was observed for NAT-derived endo-siRNAs. TE- and NAT-derived endo-siRNAs were more enriched in the male compared to female worms, with the higher relative expression in early phase of pairing. Putative targets of endo-siRNAs indicated more of them in males (106 and 66) than in females (6 and 23) for TE- and NAT-derived endo-siRNAs, respectively. Our preliminary study revealed vital role of endo-siRNAs during the reproductive development of S. japonicum and provide clues for putative novel targets to suppress worm reproduction and direction for effective anti-schistosomal drug development.


Schistosoma japonicum Small noncoding RNA Endo-siRNA Transposable element Natural antisense transcript 



This study was supported by National Natural Science Foundation of China (31472187 and 31672550), National Key Research and Development Program of China (2017YFD0501300), and The Agricultural Science and Technology Innovation Program of the Chinese Academy of Agricultural Sciences.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.

Supplementary material

436_2018_5830_MOESM1_ESM.pptx (77 kb)
Fig. S1. Pipeline for identification of novel endo-siRNA in S. japonicum. (PPTX 77 kb)
436_2018_5830_MOESM2_ESM.pptx (480 kb)
Fig. S2. Characteristic length and first base distribution of unique endo-siRNA from different libraries. Female: mixed female worm pool; Male: mixed male worm pool. (PPTX 479 kb)
436_2018_5830_MOESM3_ESM.pptx (31 kb)
Table S1 (PPTX 31 kb)
436_2018_5830_MOESM4_ESM.pptx (31 kb)
Table S2 (PPTX 31 kb)
436_2018_5830_MOESM5_ESM.xlsx (11 kb)
Data S1 This data file contains mRNA sources of NAT-derived endo-siRNAs. (XLSX 11 kb)
436_2018_5830_MOESM6_ESM.xlsx (34 kb)
Data S2 This data file contains the top 50 TE-derived male- and female-enriched endo-siRNAs. (XLSX 34 kb)
436_2018_5830_MOESM7_ESM.xlsx (30 kb)
Data S3 This data file contains the top 50 NAT-derived male and female-enriched endo-siRNAs. (XLSX 30 kb)
436_2018_5830_MOESM8_ESM.xlsx (30 kb)
Data S4 This data file contains target mRNAs for the 50 TE- and NAT-derived sex-enriched endo-siRNAs. (XLSX 29 kb)


  1. Beckmann S, Quack T, Burmeister C, Buro C, Long T, Dissous C, Grevelding CG (2010) Schistosoma mansoni: signal transduction processes during the development of the reproductive organs. Parasitology 137(3):497–520CrossRefPubMedGoogle Scholar
  2. Benson G (1999) Tandem repeats finder: a program to analyze DNA sequences. Nucleic Acids Res 27(2):573–580CrossRefPubMedPubMedCentralGoogle Scholar
  3. Biryukova I, Ye T (2015) Endogenous siRNAs and piRNAs derived from transposable elements and genes in the malaria vector mosquito Anopheles gambiae. BMC Genomics 16:278CrossRefPubMedPubMedCentralGoogle Scholar
  4. Boros DL (1989) Immunopathology of Schistosoma mansoni infection. Clin Microbiol Rev 2(3):250–269CrossRefPubMedPubMedCentralGoogle Scholar
  5. Cai P, Hou N, Piao X, Liu S, Liu H, Yang F, Wang J, Jin Q, Wang H, Chen Q (2011) Profiles of small non-coding RNAs in Schistosoma japonicum during development. PLoS Negl Trop Dis 5(8):e1256CrossRefPubMedPubMedCentralGoogle Scholar
  6. Cai P, Piao X, Hao L, Liu S, Hou N, Wang H, Chen Q (2013) A deep analysis of the small non-coding RNA population in Schistosoma japonicum eggs. PLoS One 8(5):e64003CrossRefPubMedPubMedCentralGoogle Scholar
  7. Claycomb JM (2014) Ancient endo-siRNA pathways reveal new tricks. Curr Biol 24(15):R703–15Google Scholar
  8. Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50(2):81–99CrossRefPubMedPubMedCentralGoogle Scholar
  9. Ebersberger I, Knobloch J, Kunz W (2005) Cracks in the shell--zooming in on eggshell formation in the human parasite Schistosoma mansoni. Dev Genes Evol 215(5):261–267CrossRefPubMedGoogle Scholar
  10. Fu L, Niu B, Zhu Z, Wu S, Li W (2012) CD-HIT: accelerated for clustering the next-generation sequencing data. Bioinformatics 28(23):3150–3152CrossRefPubMedPubMedCentralGoogle Scholar
  11. Ghildiyal M, Seitz H, Horwich MD, Li C, Du T, Lee S, Xu J, Kittler EL, Zapp ML, Weng Z, Zamore PD (2008) Endogenous siRNAs derived from transposons and mRNAs in Drosophila somatic cells. Science 320(5879):1077–1081CrossRefPubMedPubMedCentralGoogle Scholar
  12. Griffiths-Jones S, Moxon S, Marshall M, Khanna A, Eddy SR, Bateman A (2005) Rfam: annotating non-coding RNAs in complete genomes. Nucleic Acids Res 33:D121–D124CrossRefPubMedGoogle Scholar
  13. Hao L, Cai P, Jiang N, Wang H, Chen Q (2010) Identification and characterization of microRNAs and endogenous siRNAs in Schistosoma japonicum. BMC Genomics 11:55CrossRefPubMedPubMedCentralGoogle Scholar
  14. Hoffmann KF, Wynn TA, Dunne DW (2002) Cytokine-mediated host responses during schistosome infections; walking the fine line between immunological control and immunopathology. Adv Parasitol 52:265–307CrossRefPubMedGoogle Scholar
  15. Kapitonov VV, Jurka J (2003) Molecular paleontology of transposable elements in the Drosophila melanogaster genome. Proc Natl Acad Sci 100(11):6569–6574CrossRefPubMedPubMedCentralGoogle Scholar
  16. Katayama S, Tomaru Y, Kasukawa T, Waki K, Nakanishi M, Nakamura M, Nishida H, Yap C, Suzuki M, Kawai J (2005) Antisense transcription in the mammalian transcriptome. Science 309(5740):1564–1566CrossRefPubMedGoogle Scholar
  17. Katiyar-Agarwal S, Jin H (2010) Role of small RNAs in host-microbe interactions. Annu Rev Phytopathol 48:225–246CrossRefPubMedPubMedCentralGoogle Scholar
  18. Kawamura Y, Saito K, Kin T, Ono Y, Asai K, Sunohara T, Okada TN, Siomi MC, Siomi H (2008) Drosophila endogenous small RNAs bind to Argonaute 2 in somatic cells. Nature 453(7196):793–797CrossRefPubMedGoogle Scholar
  19. Kim VN (2005) Small RNAs: classification, biogenesis, and function. Molecules and cells 19(1):1–15PubMedGoogle Scholar
  20. Kunz W (2001) Schistosome male-female interaction: induction of germ-cell differentiation. Trends Parasitol 17(5):227–231CrossRefPubMedGoogle Scholar
  21. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC, Baldwin J, Devon K, Dewar K, Doyle M, FitzHugh W, Funke R, Gage D, Harris K, Heaford A, Howland J, Kann L, Lehoczky J, LeVine R, McEwan P, McKernan K, Meldrim J, Mesirov JP, Miranda C, Morris W, Naylor J, Raymond C, Rosetti M, Santos R, Sheridan A, Sougnez C, Stange-Thomann Y, Stojanovic N, Subramanian A, Wyman D, Rogers J, Sulston J, Ainscough R, Beck S, Bentley D, Burton J, Clee C, Carter N, Coulson A, Deadman R, Deloukas P, Dunham A, Dunham I, Durbin R, French L, Grafham D, Gregory S, Hubbard T, Humphray S, Hunt A, Jones M, Lloyd C, McMurray A, Matthews L, Mercer S, Milne S, Mullikin JC, Mungall A, Plumb R, Ross M, Shownkeen R, Sims S, Waterston RH, Wilson RK, Hillier LW, McPherson J, Marra MA, Mardis ER, Fulton LA, Chinwalla AT, Pepin KH, Gish WR, Chissoe SL, Wendl MC, Delehaunty KD, Miner TL, Delehaunty A, Kramer JB, Cook LL, Fulton RS, Johnson DL, Minx PJ, Clifton SW, Hawkins T, Branscomb E, Predki P, Richardson P, Wenning S, Slezak T, Doggett N, Cheng JF, Olsen A, Lucas S, Elkin C, Uberbacher E, Frazier M, Gibbs RA, Muzny DM, Scherer SE, Bouck JB, Sodergren EJ, Worley KC, Rives CM, Gorrell JH, Metzker ML, Naylor SL, Kucherlapati RS, Nelson DL, Weinstock GM, Sakaki Y, Fujiyama A, Hattori M, Yada T, Toyoda A, Itoh T, Kawagoe C, Watanabe H, Totoki Y, Taylor T, Weissenbach J, Heilig R, Saurin W, Artiguenave F, Brottier P, Bruls T, Pelletier E, Robert C, Wincker P, Smith DR, Doucette-Stamm L, Rubenfield M, Weinstock K, Lee HM, Dubois J, Rosenthal A, Platzer M, Nyakatura G, Taudien S, Rump A, Yang H, Yu J, Wang J, Huang G, Gu J, Hood L, Rowen L, Madan A, Qin S, Davis RW, Federspiel NA, Abola AP, Proctor MJ, Myers RM, Schmutz J, Dickson M, Grimwood J, Cox DR, Olson MV, Kaul R, Raymond C, Shimizu N, Kawasaki K, Minoshima S, Evans GA, Athanasiou M, Schultz R, Roe BA, Chen F, Pan H, Ramser J, Lehrach H, Reinhardt R, McCombie W, de la Bastide M, Dedhia N, Blöcker H, Hornischer K, Nordsiek G, Agarwala R, Aravind L, Bailey JA, Bateman A, Batzoglou S, Birney E, Bork P, Brown DG, Burge CB, Cerutti L, Chen HC, Church D, Clamp M, Copley RR, Doerks T, Eddy SR, Eichler EE, Furey TS, Galagan J, Gilbert JG, Harmon C, Hayashizaki Y, Haussler D, Hermjakob H, Hokamp K, Jang W, Johnson LS, Jones TA, Kasif S, Kaspryzk A, Kennedy S, Kent WJ, Kitts P, Koonin EV, Korf I, Kulp D, Lancet D, Lowe TM, McLysaght A, Mikkelsen T, Moran JV, Mulder N, Pollara VJ, Ponting CP, Schuler G, Schultz J, Slater G, Smit AF, Stupka E, Szustakowki J, Thierry-Mieg D, Thierry-Mieg J, Wagner L, Wallis J, Wheeler R, Williams A, Wolf YI, Wolfe KH, Yang SP, Yeh RF, Collins F, Guyer MS, Peterson J, Felsenfeld A, Wetterstrand KA, Patrinos A, Morgan MJ, de Jong P, Catanese JJ, Osoegawa K, Shizuya H, Choi S, Chen YJ, Szustakowki J, International Human Genome Sequencing Consortium (2001) Initial sequencing and analysis of the human genome. Nature 409(6822):860–921CrossRefPubMedGoogle Scholar
  22. Langmead B (2010) Aligning short sequencing reads with Bowtie. Curr Protoc Bioinformatics Chapter:Unit-11.7Google Scholar
  23. Langmead B, Trapnell C, Pop M, Salzberg SL (2009) Ultrafast and memory-efficient alignment of short DNA sequences to the human genome. Genome Biol 10(3):R25CrossRefPubMedPubMedCentralGoogle Scholar
  24. Li YY, Qin L, Guo ZM, Liu L, Xu H, Hao P, Su J, Shi Y, He WZ, Li YX (2006) In silico discovery of human natural antisense transcripts. BMC Bioinformatics 7:18CrossRefPubMedPubMedCentralGoogle Scholar
  25. Okamura K, Balla S, Martin R, Liu N, Lai EC (2008a) Two distinct mechanisms generate endogenous siRNAs from bidirectional transcription in Drosophila melanogaster. Nat Struct Mol Biol 15(6):581–590CrossRefPubMedPubMedCentralGoogle Scholar
  26. Okamura K, Chung WJ, Ruby JG, Guo H, Bartel DP, Lai EC (2008b) The Drosophila hairpin RNA pathway generates endogenous short interfering RNAs. Nature 453(7196):803–806CrossRefPubMedPubMedCentralGoogle Scholar
  27. Popiel I (1986) Male-stimulated female maturation inSchistosoma: a review. J Chem Ecol 12(8):1745–1754CrossRefPubMedGoogle Scholar
  28. Rebollo R, Zhang Y, Mager DL (2012) Transposable elements: not as quiet as a mouse. Genome Biol 13(6):159CrossRefPubMedPubMedCentralGoogle Scholar
  29. Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23(10):578–587CrossRefPubMedPubMedCentralGoogle Scholar
  30. Sobreira TJ, Durham AM, Gruber A (2006) TRAP: automated classification, quantification and annotation of tandemly repeated sequences. Bioinformatics 22(3):361–362CrossRefPubMedGoogle Scholar
  31. Soumillon M, Necsulea A, Weier M, Brawand D, Zhang X, Gu H, Barthes P, Kokkinaki M, Nef S, Gnirke A, Dym M, de Massy B, Mikkelsen TS, Kaessmann H (2013) Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. Cell Rep 3(6):2179–2190CrossRefPubMedGoogle Scholar
  32. Sun J, Wang SW, Li C, Hu W, Ren YJ, Wang JQ (2014) Transcriptome profilings of female Schistosoma japonicum reveal significant differential expression of genes after pairing. Parasitol Res 113(3):881–892CrossRefPubMedGoogle Scholar
  33. Valencia-Sanchez MA, Liu J, Hannon GJ, Parker R (2006) Control of translation and mRNA degradation by miRNAs and siRNAs. Genes Dev 20(5):515–524CrossRefPubMedGoogle Scholar
  34. Vazquez F (2006) Arabidopsis endogenous small RNAs: highways and byways. Trends Plant Sci 11(9):460–468CrossRefPubMedGoogle Scholar
  35. Wang J, Czech B, Crunk A, Wallace A, Mitreva M, Hannon GJ, Davis RE (2011) Deep small RNA sequencing from the nematode Ascaris reveals conservation, functional diversification, and novel developmental profiles. Genome Res 21(9):1462–1477CrossRefPubMedPubMedCentralGoogle Scholar
  36. Wang J, Yu Y, Shen H, Qing T, Zheng Y, Li Q, Mo X, Wang S, Li N, Chai R, Xu B, Liu M, Brindley PJ, McManus DP, Feng Z, Shi L, Hu W (2017) Dynamic transcriptomes identify biogenic amines and insect-like hormonal regulation for mediating reproduction in Schistosoma japonicum. Nat Commun 8:14693CrossRefPubMedPubMedCentralGoogle Scholar
  37. Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453(7194):539–543CrossRefPubMedGoogle Scholar
  38. Werner A, Carlile M, Swan D (2009) What do natural antisense transcripts regulate? RNA Biol 6(1):43–48CrossRefPubMedGoogle Scholar
  39. Werner A, Cockell S, Falconer J, Carlile M, Alnumeir S, Robinson J (2014) Contribution of natural antisense transcription to an endogenous siRNA signature in human cells. BMC Genomics 15:19CrossRefPubMedPubMedCentralGoogle Scholar
  40. WHO (2017) Schistosomiasis, fact sheet No. 115. Updated October.
  41. Zhang X, Xia J, Lii YE, Barrera-Figueroa BE, Zhou X, Gao S, Lu L, Niu D, Chen Z, Leung C, Wong T, Zhang H, Guo J, Li Y, Liu R, Liang W, Zhu J-K, Zhang W, Jin H (2012) Genome-wide analysis of plant nat-siRNAs reveals insights into their distribution, biogenesis and function. Genome Biol 13(3):R20CrossRefPubMedPubMedCentralGoogle Scholar
  42. Zhou Y, Zheng H, Chen Y, Zhang L, Wang K, Guo J, Huang Z, Zhang B, Huang W, Jin K, Dou T, Hasegawa M, Wang L, Zhang Y, Zhou J, Tao L, Cao Z, Li Y, Vinar T, Brejova B, Brown D, Li M, Miller DJ, Blair D, Zhong Y, Chen Z, Liu F, Hu W, Wang ZQ, Zhang QH, Song HD, Chen S, Xu X, Xu B, Ju C, Huang Y, Brindley PJ, McManus DP, Feng Z, Han ZG, Lu G, Ren S, Wang Y, Gu W, Kang H, Chen J, Chen X, Chen S, Wang L, Yan J, Wang B, Lv X, Jin L, Wang B, Pu S, Zhang X, Zhang W, Hu Q, Zhu G, Wang J, Yu J, Wang J, Yang H, Ning Z, Beriman M, Wei CL, Ruan Y, Zhao G, Wang S, Liu F, Zhou Y, Wang ZQ, Lu G, Zheng H, Brindley PJ, McManus DP, Blair D, Zhang QH, Zhong Y, Wang S, Han ZG, Chen Z, Wang S, Han ZG, Chen Z (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460(7253):345–351CrossRefPubMedCentralGoogle Scholar
  43. Zhu L, Zhao J, Wang J, Hu C, Peng J, Luo R, Zhou C, Liu J, Lin J, Jin Y, Davis RE, Cheng G (2016) MicroRNAs are involved in the regulation of ovary development in the pathogenic blood fluke Schistosoma japonicum. PLoS Pathog 12(2):e1005423CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Shanghai Veterinary Research Institute, Chinese Academy of Agricultural SciencesKey Laboratory of Animal Parasitology, Ministry of AgricultureShanghaiChina
  2. 2.School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina

Personalised recommendations