Parasitology Research

, Volume 117, Issue 4, pp 1225–1235 | Cite as

Role of glutathione, ROS, and Bcl-xL in the inhibition of apoptosis of monocyte-derived dendritic cells by Leishmania mexicana promastigotes

  • Jorge Rodríguez-González
  • Arturo A. Wilkins-Rodríguez
  • Laila Gutiérrez-Kobeh
Original Paper


Dendritic cells (DCs) are one of the principal host cells of the obligate intracellular parasite Leishmania that can survive and reproduce within cells due to the ability to regulate different cellular events, including apoptosis. Inhibition of host cell apoptosis is a strategy employed by multiple pathogens to ensure their survival in the infected cell. We have previously reported that Leishmania mexicana promastigotes and amastigotes inhibit camptothecin-induced apoptosis of monocyte-derived dendritic cells (moDCs) through the downregulation of p38 and JNK phosphorylation. The upregulation of glutathione (GSH), the most important regulator of reactive oxygen species (ROS) concentration, has proven to protect cells from apoptosis through the inhibition of JNK1. Another mechanism employed by cells for the protection of apoptosis is the expression of anti-apoptotic proteins of the Bcl-2 family. The aim of this study was to determine if GSH, ROS, and Bcl-xL participate in the inhibition of camptothecin-induced apoptosis of moDC by L. mexicana promastigotes. GSH quantification assays showed that camptothecin and BSO (an inhibitor of glutathione synthesis) strongly decreased intracellular GSH concentration in moDC, while infection with L. mexicana promastigotes had no effect in the level of GSH. On the other hand, infection with L. mexicana promastigotes of BSO- and camptothecin-treated moDC diminished the concentration of ROS and induced the expression of the anti-apoptotic protein Bcl-xL. Our findings suggest that inhibition of camptothecin-induced apoptosis of moDC by L. mexicana promastigotes is preferentially regulated by the expression of anti-apoptotic proteins of the Bcl-2 family rather than by the redox status of the cell.


Apoptosis Bcl-xL Dendritic cells Glutathione Leishmania mexicana 



We thank Dr. Alfonso Olivos García for his valuable help with the ROS determinations.

This work was supported by grant IN225116 from Papiit, DGAPA-UNAM. Jorge Rodríguez-González is a Ph. D student of Posgrado en Ciencias Biológicas, Facultad de Medicina, Universidad Nacional Autónoma de México and is recipient of a CONACyT fellowship, number 481304.

Compliance with ethical standards

Informed consent was obtained for the use of blood samples according to the Declaration of Helsinki and the Comisiones de Investigación y Ética de la Facultad de Medicina, Universidad Nacional Autónoma de México approved the protocol with number 104/2015 on August 25, 2015 with a validity of 3 years.


  1. Aga E, Katschinski DM, van Zandbergen G, Laufs H, Hansen B, Müller K, Solbach W, Laskay T (2002) Inhibition of the spontaneous apoptosis of neutrophil granulocytes by the intracellular parasite Leishmania major. J Immunol 169(2):898–905CrossRefPubMedGoogle Scholar
  2. Akarid K, Arnoult D, Micic-Polianski J, Sif J, Estaquier J, Ameisen JC (2004) Leishmania major-mediated prevention of programmed cell death induction in infected macrophages is associated with the repression of mitochondrial release of cytochrome c. J Leukoc Biol 76(1):95–103. CrossRefPubMedGoogle Scholar
  3. Almeida TF, Palma LC, Mendez LC, Noronha-Dutra AA, Veras PS (2012) Leishmania amazonensis fails to induce the release of reactive oxygen intermediates by CBA macrophages. Parasite Immunol 34(10):492–498. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7(5):e35671. CrossRefPubMedPubMedCentralGoogle Scholar
  5. Armstrong JS, Steinauer KK, Hornung B, Irish JM, Lecane P, Birrell GW, Peehl DM, Knox SJ (2002) Role of glutathione depletion and reactive oxygen species generation in apoptotic signaling in a human B lymphoma cell line. Cell Death Differ 9(3):252–263. CrossRefPubMedGoogle Scholar
  6. Armstrong JS, Whiteman M, Yang H, Jones DP, Sternberg P Jr (2004) Cysteine starvation activates the redox-dependent mitochondrial permeability transition in retinal pigment epithelial cells. Invest Ophthalmol Vis Sci 45(11):4183–4189. CrossRefPubMedGoogle Scholar
  7. Bates PA, Tetley L (1993) Leishmania mexicana: induction of metacyclogenesis by cultivation of promastigotes at acidic pH. Exp Parasitol 76(4):412–423. CrossRefPubMedGoogle Scholar
  8. Bojes HK, Datta K, Xu J, Chin A, Simonian P, Nuñez G, Kehrer JP (1997) Bcl-xL overexpression attenuates glutathione depletion in FL5.12 cells following interleukin-3 withdrawal. Biochem J 325(Pt 2):315–319CrossRefPubMedPubMedCentralGoogle Scholar
  9. Carneiro PP, Conceicao J, Macedo M, Magalhaes V, Carvalho EM, Bacellar O (2016) The role of nitric oxide and reactive oxygen species in the killing of Leishmania braziliensis by monocytes from patients with cutaneous leishmaniasis. PLoS One 11(2):e0148084. CrossRefPubMedPubMedCentralGoogle Scholar
  10. Coppola S, Ghibelli L (2000) GSH extrusion and and the mitochondrial pathway of apoptotic signalling. Biochem Soc Transs 28(2):56–61CrossRefGoogle Scholar
  11. Cruz KK, Fonseca SG, Monteiro MC, Silva OS, Andrade VM, Cunha FQ, Romão PR (2008) The influence of glutathione modulators on the course of Leishmania major infection in susceptible and resistant mice. Parasite Immunol 30(3):171–174. CrossRefPubMedGoogle Scholar
  12. Dalton TP, Dieter MZ, Yang Y, Shertzer HG, Nebert DW (2000) Knockout of the mouse glutamate cysteine ligase catalytic subunit (Gclc) gene: embryonic lethal when homozygous, and proposed model for moderate glutathione deficiency when heterozygous. Biochem Biophys Res Comm 279(2):324–329. CrossRefPubMedGoogle Scholar
  13. Dam AD, Mitchell AS, Rush JW, Quadrilatero J (2012) Elevated skeletal muscle apoptotic signaling following glutathione depletion. Apoptosis 17(1):48–60. CrossRefPubMedGoogle Scholar
  14. Danial NN, Korsmeyer SJ (2004) Cell death: critical control points. Cell 116(2):205–219CrossRefPubMedGoogle Scholar
  15. Donovan MJ, Maciuba BZ, Mahan CE, McDowell MA (2009) Leishmania infection inhibits cycloheximide-induced macrophage apoptosis in a strain-dependent manner. Exp Parasitol 123(1):58–64. CrossRefPubMedPubMedCentralGoogle Scholar
  16. Earnshaw WC, Martins LM, Kaufmann SH (1999) Mammalian caspases: structure, activation, substrates, and functions during apoptosis. Annu Rev Biochem 68:383–424. CrossRefPubMedGoogle Scholar
  17. Fan Y, Wu D, Jin L, Yin Z (2005) Human glutamylcysteine synthetase protects HEK293 cells against UV-induced cell death through inhibition of c-Jun NH2-terminal kinase. Cell Biol Int 29(8):695–702. CrossRefPubMedGoogle Scholar
  18. Franco R, Cidlowski JA (2009) Apoptosis and glutathione: beyond an antioxidant. Cell Death Differ 16(10):1303–1314. CrossRefPubMedGoogle Scholar
  19. Galadari S, Rahman A, Pallichankandy S, Thayyullathil F (2017) Reactive oxygen species and cancer paradox: to promote or to suppress? Free Rad Biol Med 104:144–164. CrossRefPubMedGoogle Scholar
  20. Ghibelli L, Coppola S, Rotilio G, Lafavia E, Maresca V, Ciriolo MR (1995) Non-oxidative loss of glutathione in apoptosis via GSH extrusion. Biochem Biophys Res Comm 216(1):313–320. CrossRefPubMedGoogle Scholar
  21. Ghibelli L, Fanelli C, Rotilio G, Lafavia E, Coppola S, Colussi C, Civitareale P, Ciriolo MR (1998) Rescue of cells from apoptosis by inhibition of active GSH extrusion. FASEB J 12(6):479–486CrossRefPubMedGoogle Scholar
  22. Giri J, Srivastav S, Basu M, Palit S, Gupta P, Ukil A (2016) Leishmania donovani exploits myeloid cell leukemia 1 (MCL-1) protein to prevent mitochondria-dependent host cell apoptosis. J Biol Chem 291(7):3496–3507. CrossRefPubMedGoogle Scholar
  23. Green DR (2003) Overview: apoptotic signaling pathways in the immune system. Immunol Rev 193:5–9CrossRefPubMedGoogle Scholar
  24. Green D, Kroemer G (1998) The central executioners of apoptosis: caspases or mitochondria? Trends Cell Biol 8(7):267–271CrossRefPubMedGoogle Scholar
  25. Griffith OW, Meister A (1979) Potent and specific inhibition of glutathione synthesis by buthionine sulfoximine (S-n-butyl homocysteine sulfoximine). J Biol Chem 254(16):7558–7560PubMedGoogle Scholar
  26. Gupta P, Srivastav S, Saha S, Das PK, Ukil A (2016) Leishmania donovani inhibits macrophage apoptosis and pro-inflammatory response through AKT-mediated regulation of beta-catenin and FOXO-1. Cell Death Differ 23(11):1815–1826. CrossRefPubMedPubMedCentralGoogle Scholar
  27. Gutierrez-Kobeh L, de Oyarzabal E, Argueta J, Wilkins A, Salaiza N, Fernández E, López O, Becker I (2013) Inhibition of dendritic cell apoptosis by Leishmania mexicana amastigotes. Parasitol Res 112(4):1755–1762. CrossRefPubMedGoogle Scholar
  28. Handley ME, Thakker M, Pollara G, Chain BM, Katz DR (2005) JNK activation limits dendritic cell maturation in response to reactive oxygen species by the induction of apoptosis. Free Rad Biol Med 38(12):1637–1652. CrossRefPubMedGoogle Scholar
  29. Hoeflich KP, Yeh WC, Yao Z, Mak TW, Woodgett JR (1999) Mediation of TNF receptor-associated factor effector functions by apoptosis signal-regulating kinase-1 (ASK1). Oncogene 18(42):5814–5820. CrossRefPubMedGoogle Scholar
  30. Jeong CH, Joo SH (2016) Downregulation of reactive oxygen species in apoptosis. J Cancer Prev 21(1):13–20. CrossRefPubMedPubMedCentralGoogle Scholar
  31. Kane DJ, Sarafian TA, Anton R, Hahn H, Gralla EB, Valentine JS, Ord T, Bredesen DE (1993) Bcl-2 inhibition of neural death: decreased generation of reactive oxygen species. Science 262(5137):1274–1277CrossRefPubMedGoogle Scholar
  32. Kyriakis JM, Avruch J (2001) Mammalian mitogen-activated protein kinase signal transduction pathways activated by stress and inflammation. Physiol Rev 81(2):807–869CrossRefPubMedGoogle Scholar
  33. Lisi S, Sisto M, Acquafredda A, Spinelli R, Schiavone M, Mitolo V, Brandonisio O, Panaro M (2005) Infection with Leishmania infantum inhibits actinomycin D-induced apoptosis of human monocytic cell line U-937. J Euk Microbiol 52(3):211–217. CrossRefPubMedGoogle Scholar
  34. Luo HR, Hattori H, Hossain MA, Hester L, Huang Y, Lee-Kwon W, Donowitz M, Nagata E, Snyder SH (2003) Akt as a mediator of cell death. Proc Natl Acad Sci U S A 100(20):11712–11717. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Macdonald NJ, Delderfield SM, Zhang W, Taglialatela G (2003) Tumour necrosis factor-alpha- vs. growth factor deprivation-promoted cell death: distinct converging pathways. Aging Cell 2(5):245–256CrossRefPubMedGoogle Scholar
  36. Mantzaris MD, Bellou S, Skiada V, Kitsati N, Fotsis T, Galaris D (2016) Intracellular labile iron determines H2O2-induced apoptotic signaling via sustained activation of ASK1/JNK-p38 axis. Free Rad Biol Med 97:454–465. CrossRefPubMedGoogle Scholar
  37. Martinou JC, Green DR (2001) Breaking the mitochondrial barrier. Nat Rev Mol Cell Biol 2(1):63–67. CrossRefPubMedGoogle Scholar
  38. Meredith MJ, Cusick CL, Soltaninassab S, Sekhar KS, Lu S, Freeman ML (1998) Expression of Bcl-2 increases intracellular glutathione by inhibiting methionine-dependent GSH efflux. Biochem Biophys Res Comm 248(3):458–463. CrossRefPubMedGoogle Scholar
  39. Moore KJ, Matlashewski G (1994) Intracellular infection by Leishmania donovani inhibits macrophage apoptosis. J Immunol 152(6):2930–2937PubMedGoogle Scholar
  40. Moore KJ, Turco SJ, Matlashewski G (1994) Leishmania donovani infection enhances macrophage viability in the absence of exogenous growth factor. J Leukoc Biol 55(1):91–98CrossRefPubMedGoogle Scholar
  41. Morris EJ, Geller HM (1996) Induction of neuronal apoptosis by camptothecin, an inhibitor of DNA topoisomerase-I: evidence for cell cycle-independent toxicity. J Cell Biol 134(3):757–770CrossRefPubMedGoogle Scholar
  42. Redza-Dutordoir M, Averill-Bates DA (2016) Activation of apoptosis signalling pathways by reactive oxygen species. Biochim Biophys Acta 1863(12):2977–2992. CrossRefPubMedGoogle Scholar
  43. Rodriguez-Gonzalez J, Wilkins-Rodriguez A, Argueta-Donohue J, Gutierrez-Kobeh L (2016) Leishmania mexicana promastigotes down regulate JNK and p-38 MAPK activation: Role in the inhibition of camptothecin-induced apoptosis of monocyte-derived dendritic cells. Exp Parasitol 163:57–67. CrossRefPubMedGoogle Scholar
  44. Rogers M, Kropf P, Choi BS, Dillon R, Podinovskaia M, Bates P, Müller I (2009) Proteophosophoglycans regurgitated by Leishmania-infected sand flies target the L-arginine metabolism of host macrophages to promote parasite survival. PLoS Pathog 5(8):e1000555. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Romani N, Gruner S, Brang D, Kämpgen E, Lenz A, Trockenbacher B, Konwalinka G, Fritsch PO, Steinman RM, Schuler G (1994) Proliferating dendritic cell progenitors in human blood. J Exp Med 180(1):83–93CrossRefPubMedGoogle Scholar
  46. Ruhland A, Leal N, Kima PE (2007) Leishmania promastigotes activate PI3K/Akt signalling to confer host cell resistance to apoptosis. Cell Microbiol 9(1):84–96. CrossRefPubMedGoogle Scholar
  47. Sallusto F, Lanzavecchia A (1994) Efficient presentation of soluble antigen by cultured human dendritic cells is maintained by granulocyte/macrophage colony-stimulating factor plus interleukin 4 and downregulated by tumor necrosis factor alpha. J Exp Med 179(4):1109–1118CrossRefPubMedGoogle Scholar
  48. Sarkar A, Aga E, Bussmeyer U, Bhattacharyya A, Möller S, Hellberg L, Behnen M, Solbach W, Laskay T (2013) Infection of neutrophil granulocytes with Leishmania major activates ERK 1/2 and modulates multiple apoptotic pathways to inhibit apoptosis. Med Microbiol Immunol 202(1):25–35. CrossRefPubMedGoogle Scholar
  49. Son Y, Kim S, Chung HT, Pae HO (2013) Reactive oxygen species in the activation of MAP kinases. Methods Enzymol 528:27–48. CrossRefPubMedGoogle Scholar
  50. Srivastav S, Basu Ball W, Gupta P, Giri J, Ukil A, Das PK (2014) Leishmania donovani prevents oxidative burst-mediated apoptosis of host macrophages through selective induction of suppressors of cytokine signaling (SOCS) proteins. J Biol Chem 289(2):1092–1105. CrossRefPubMedGoogle Scholar
  51. Thornberry NA, Lazebnik Y (1998) Caspases: enemies within. Science 281(5381):1312–1316CrossRefPubMedGoogle Scholar
  52. Tran TH, Andreka P, Rodrigues CO, Webster KA, Bishopric NH (2007) Jun kinase delays caspase-9 activation by interaction with the apoptosome. J Biol Chem 282(28):20340–20350. CrossRefPubMedGoogle Scholar
  53. Valdes-Reyes L, Argueta J, Morán J, Salaiza N, Hernández J, Berzunza M, Becker I, Gutiérrez-Kobeh L (2009) Leishmania mexicana: inhibition of camptothecin-induced apoptosis of monocyte-derived dendritic cells. Exp Parasitol 121(3):199–207. CrossRefPubMedGoogle Scholar
  54. Van Laethem A, Nys K, Van Kelst S, Claerhout S, Ichijo H, Vandenheede JR, Garmyn M, Agostinis P (2006) Apoptosis signal regulating kinase-1 connects reactive oxygen species to p38 MAPK-induced mitochondrial apoptosis in UVB-irradiated human keratinocytes. Free Radic Biol Med 41(9):1361–1371. CrossRefPubMedGoogle Scholar
  55. Vazquez-Lopez R, Argueta-Donohue J, Wilkins-Rodriguez A, Escalona-Montano A, Gutierrez-Kobeh L (2015) Leishmania mexicana amastigotes inhibit p38 and JNK and activate PI3K/AKT: role in the inhibition of apoptosis of dendritic cells. Parasite Immunol 37(11):579–589. CrossRefPubMedGoogle Scholar
  56. Voehringer DW, McConkey DJ, McDonnell TJ, Brisbay S, Meyn RE (1998) Bcl-2 expression causes redistribution of glutathione to the nucleus. Proc e Natl Acad Sci USAa 95(6):2956–2960CrossRefGoogle Scholar
  57. Zimmermann AK, Loucks FA, Schroeder EK, Bouchard RJ, Tyler KL, Linseman DA (2007) Glutathione binding to the Bcl-2 homology-3 domain groove: a molecular basis for Bcl-2 antioxidant function at mitochondria. J Biol Chem 282(40):29296–29304. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Jorge Rodríguez-González
    • 1
    • 2
  • Arturo A. Wilkins-Rodríguez
    • 1
  • Laila Gutiérrez-Kobeh
    • 1
  1. 1.Unidad Periférica de Investigación UNAM-INC, División de Investigación, Facultad de MedicinaUniversidad Nacional Autónoma de México-Instituto Nacional de Cardiología “Ignacio Chávez”Ciudad de MéxicoMéxico
  2. 2.Posgrado en Ciencias Biológicas, Facultad de Medicina, Unidad de PosgradoCiudad UniversitariaCiudad de MéxicoMéxico

Personalised recommendations