Parasitology Research

, Volume 117, Issue 4, pp 1147–1158 | Cite as

Mast cell-nerve interaction in the colon of Trypanosoma cruzi-infected individuals with chagasic megacolon

  • Patrícia Rocha Martins
  • Rodolfo Duarte Nascimento
  • Aline Tomaz dos Santos
  • Enio Chaves de Oliveira
  • Patricia Massara Martinelli
  • Débora d’Avila Reis
Original Paper


Chagas disease is an infection caused by the parasite Trypanosoma cruzi that affects millions of people worldwide and is endemic in Latin America. Megacolon is the most frequent complication of the digestive chronic form and happens due to lesions of the enteric nervous system. The neuronal lesions seem to initiate in the acute phase and persist during the chronic phase, albeit the mechanisms involved in this process are still debated. Among the cells of the immune system possibly involved in this pathological process is the mast cell (MC) due to its well-known role in the bi-directional communication between the immune and nervous systems. Using ultrastructural analysis, we found an increased number of degranulated MCs in close proximity to nerve fibers in infected patients when compared with uninfected controls. We also immunostained MCs for the two pro-inflammatory molecules tryptase and chymase, the first being also important in neuronal death. The number of MCs immunostained for tryptase or chymase was increased in patients with megacolon, whereas increased tryptase staining was additionally observed in patients without megacolon. Moreover, we detected the expression of the tryptase receptor PAR2 in neurons of the enteric nervous system, which correlated to the tryptase staining results. Altogether, the data presented herein point to the participation of MCs on the denervation process that occurs in the development of T. cruzi-induced megacolon.


Neuroimmune interaction Tryptase and chymase mast cells PAR2 Enteric nervous system Chagasic megacolon 


Funding information

This work was supported by the Conselho Nacional de desenvolvimento Científico e Tecnológico (CNPq) and Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.


  1. d’Avila Reis D, Lemos EM, Silva GC, Adad SJ, McCurley T, Correa-Oliveira R, Machado CR (2001) Phenotypic characterization of the inflammatory cells in chagasic megaoesophagus. Trans R Soc Trop Med Hyg 95(2):177–178. CrossRefPubMedGoogle Scholar
  2. Adad SJ, Cançado CG, Etchebehere RM, Teixeira VPA, Gomes UA, Chapadeiro E, Lopes ER (2001) Neuron count reevaluation in the myenteric plexus of chagasic megacolon after morphometric neuron analysis. Virchows Arch 438(3):254–258. CrossRefPubMedGoogle Scholar
  3. Adad SJ, E Silva GB, Jammal AA (2013) The development of chagasic megacolon requires severe denervation and the reduction in interstitial cells of Cajal number might be a contributing factor. Virchows Arch 462(1):127. CrossRefPubMedGoogle Scholar
  4. Balestra B, Vicini R, Cremon C, Zecchi L, Dothel G, Vasina V, De Giorgio R, Paccapelo A, Pastoris O, Stanghellini V, Corinaldesi R, De Ponti F, Tonini M, Barbara G (2012) Colonic mucosal mediators from patients with irritable bowel syndrome excite enteric cholinergic motor neurons. Neurogastroenterol Motil 24(12):1118–e570. CrossRefPubMedGoogle Scholar
  5. Barbara G, Stanghellini V, De Giorgio R, Cremon C, Cottrell GS, Santini D, Pasquinelli G, Morselli-Labate AM, Grady EF, Bunnett NW, Collins SM, Corinaldesi R (2004) Activated mast cells in proximity to colonic nerves correlate with abdominal pain in irritable bowel syndrome. Gastroenterology 126(3):693–702. CrossRefPubMedGoogle Scholar
  6. Barbara G, Wang B, Stanghellini V, de Giorgio R, Cremon C, Di Nardo G, Trevisani M, Campi B, Geppetti P, Tonini M, Bunnett NW, Grundy D, Corinaldesi R (2007) Mast cell-dependent excitation of visceral-nociceptive sensory neurons in irritable bowel syndrome. Gastroenterology 132(1):26–37. CrossRefPubMedGoogle Scholar
  7. Bischoff SC (2009) Physiological and pathophysiological functions of intestinal mast cells. Semin Immunopathol 31(2):185–205. CrossRefPubMedGoogle Scholar
  8. Bischoff SC, Schwengberg S, Lorentz A, Manns MP, Bektas H, Sann H, Levi-Schaffer F, Shanahan F, Schemann M (2004) Substance P and other neuropeptides do not induce mediator release in isolated human intestinal mast cells. Neurogastroenterol Motil 16(2):185–193. CrossRefPubMedGoogle Scholar
  9. Buhner S, Schemann M (2012) Mast cell-nerve axis with a focus on the human gut. Biochim Biophys Acta 1822(1):85–92. CrossRefPubMedGoogle Scholar
  10. Buhner S, Li Q, Vignali S, Barbara G, De Giorgio R, Stanghellini V, Cremon C, Zeller F, Langer R, Daniel H, Michel K, Schemann M (2009) Activation of human enteric neurons by supernatants of colonic biopsy specimens from patients with irritable bowel syndrome. Gastroenterology 137(4):1425–1434. CrossRefPubMedGoogle Scholar
  11. Cabral HR, Novak IT, Glocker TM, Castro Viera GA (2002) Chagas cardiopathy: identification and quantification of infiltrating cells in the hearts of cardiac death patients of different ages. Rev Fac Cien Med Univ Nac Cordoba 59(1):83–89PubMedGoogle Scholar
  12. Campos CF, Cangussú SD, Duz AL, Cartelle CT, Noviello Mde L, Veloso VM, Bahia MT, Almeida-Leite CM, Arantes RM (2016) Enteric Neuronal damage, intramuscular denervation and smooth muscle phenotype changes as mechanisms of chagasic megacolon: evidence from a long-term murine model of Trypanosoma cruzi infection. PLoS One 11(4):e0153038. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Cardoso V, Chesné J, Ribeiro H, García-Cassani B, Carvalho T, Bouchery T, Shah K, Barbosa-Morais NL, Harris N, Veiga-Fernandes H (2017) Neuronal regulation of type 2 innate lymphoid cells via neuromedin U. Nature 549(7671):277–281. CrossRefPubMedPubMedCentralGoogle Scholar
  14. Chapadeiro E, Beraldo PS, Jesus PC, Oliveira Júnior WP, Junqueira Júnior LF (1988) Cardiac lesions in Wistar rats inoculated with various strains of Trypanosoma cruzi. Rev Soc Bras Med Trop 21:95–103CrossRefPubMedGoogle Scholar
  15. Cho H-Y, Choi SJ, Lee S-W, Kim YW, Lee CK, Lee S-W (2015) Iopromide in combination with IFN-γ induces the activation of HMC-1 cells via IL-4 and MCP-1 expression. Cell Immunol 293(2):95–103. CrossRefPubMedGoogle Scholar
  16. Christerson U, Keita AV, Söderholm JD, Gustafson-Svärd C (2009) Increased expression of protease-activated receptor-2 in mucosal mast cells in Crohn’s ileitis. J Crohns Colitis 3(2):100–108. CrossRefPubMedGoogle Scholar
  17. Conti P, Caraffa A, Ronconi G (2018) Impact of mast cells in mucosal immunity of intestinal inflammation: inhibitory effect of IL-37. Eur J Pharmacol 818:294–299. CrossRefPubMedGoogle Scholar
  18. Corvera CU, Déry O, McConalogue K, Gamp P, Thoma M, Al-Ani B, Caughey GH, Hollenberg MD, Bunnett NW (1999) Thrombin and mast cell tryptase regulate guinea-pig myenteric neurons through proteinase-activated receptors -1 and -2. J Physiol 517(3):741–756. CrossRefPubMedPubMedCentralGoogle Scholar
  19. Coura JR, Borges-Pereira J (2010) Chagas disease: 100 years after its discovery. A systemic review. Acta Trop 115(1-2):5–13. CrossRefPubMedGoogle Scholar
  20. Coura JR, Dias JCP (2009) Epidemiology, control and surveillance of Chagas disease: 100 years after its discovery. Mem Inst Oswaldo Cruz 104(Suppl):31–40. CrossRefPubMedGoogle Scholar
  21. Crivellato E, Candussio L, Mallardi F, Ribatti D (2002) Recombinant human alpha-2a interferon promotes an atypical process of mast cell secretion with ultrastructural features suggestive for piecemeal degranulation. J Anat 201(6):507–512. CrossRefPubMedPubMedCentralGoogle Scholar
  22. Di Nardo G, Barbara G, Cucchiara S, Cremon C, Shulman RJ, Isoldi S, Zecchi L, Drago L, Oliva S, Saulle R, Barbaro MR, Stronati L (2014) Neuroimmune interactions at different intestinal sites are related to abdominal pain symptoms in children with IBS. Neurogastroenterol Motil 26(2):196–204. CrossRefPubMedGoogle Scholar
  23. Dias J, Silveira A, Schofield C (2002) The impact of Chagas disease control in Latin America: a review. Mem Inst Oswaldo Cruz 97(5):603–612. CrossRefPubMedGoogle Scholar
  24. Dvorak AM, Tepper RI, Weller PF, Morgan ES, Estrella P, Monahan-Earley RA, Galli SJ (1994) Piecemeal degranulation of mast cells in the inflammatory eyelid lesions of interleukin-4 transgenic mice. Evidence of mast cell histamine release in vivo by diamine oxidase-gold enzyme-affinity ultrastructural cytochemistry. Blood 83(12):3600–3612PubMedGoogle Scholar
  25. Farhadi A, Keshavarzian A, Van de Kar LD, Jakate S, Domm A, Zhang L, Shaikh M, Banan A, Fields JZ (2005) Heightened responses to stressors in patients with inflammatory bowel disease. Am J Gastroenterol 100:1796–1804Google Scholar
  26. Freitas MA, Segatto N, Tischler N, de Oliveira EC, Brehmer A, da Silveira AB (2017) Relation between mast cells concentration and serotonin expression in chagasic megacolon development. Parasite Immunol, 39, 3 doi:
  27. Heard BE, Dewar A, Nunn AJ, Kay AB (1990) Heterogeneous ultrasctruture of human bronchial mast cell: morphometric subdivision of cell types and evidence for a degranulation gradient. Am J Respir Cell Mol Biol 3:71–78Google Scholar
  28. Heuston S, Hyland NP (2012) Chymase inhibition as a pharmacological target: a role in inflammatory and functional gastrointestinal disorders? Br J Pharmacol 167(4):732–740. CrossRefPubMedPubMedCentralGoogle Scholar
  29. Hotez PJ, Dumonteil E, Betancourt Cravioto M, Bottazzi ME, Tapia-Conyer R, Meymandi S, Karunakara U, Ribeiro I, Cohen RM, Pecoul B (2013) An unfolding tragedy of Chagas disease in North America. PLoS Negl Trop Dis 7(10):e2300. CrossRefPubMedPubMedCentralGoogle Scholar
  30. Klose CSN, Mahlakõiv T, Moeller JB, Rankin LC, Flamar AL, Kabata H, Monticelli LA, Moriyama S, Putzel GG, Rakhilin N, Shen X, Kostenis E, König GM, Senda T, Carpenter D, Farber DL, Artis D (2017) The neuropeptide neuromedin U stimulates innate lymphoid cells and type 2 inflammation. Nature 549(7671):282–286. CrossRefPubMedGoogle Scholar
  31. Köberle F (1963) Enteromegaly and cardiomegaly in Chagas disease. Gut 4(4):399–405. CrossRefPubMedCentralGoogle Scholar
  32. Köberle F (1970) The causation and importance of nervous lesions in American trypanosomiasis. Bull World Health Organ 42(5):739–743PubMedPubMedCentralGoogle Scholar
  33. Kraneveld AD, Rijnierse A, Nijkamp FP, Garssen J (2008) Neuro-immune interactions in inflammatory bowel disease and irritable bowel syndrome: future therapeutic targets. Eur J Pharmacol 585(2-3):361–374. CrossRefPubMedGoogle Scholar
  34. Kugler EM, Mazzuoli G, Demir IE, Ceyhan GO, Zeller F, Schemann M (2012) Activity of protease-activated receptors in primary cultured human myenteric neurons. Front Neurosci 6:133. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Kulka M, Sheen CH, Tancowny BP, Grammer LC, Schleimer RP (2008) Neuropeptides activate human mast cell degranulation and chemokine production. Immunology 123(3):398–410. CrossRefPubMedPubMedCentralGoogle Scholar
  36. Lee KN, Lee OY (2016) The role of mast cells in irritable bowel syndrome. Gastroenterol Res Pract 2016:2031480–2031411. PubMedPubMedCentralGoogle Scholar
  37. Lee BY, Bacon KM, Bottazzi ME, Hotez PJ (2013) Global economic burden of Chagas disease: a computational simulation model. Lancet Infect Dis 13(4):342–348. CrossRefPubMedPubMedCentralGoogle Scholar
  38. Linden DR, Manning BP, Bunnett NW, Mawe GM (2001) Agonists of proteinase-activated receptor 2 excite guinea pig ileal myenteric neurons. Eur J Pharmacol 431(3):311–314. CrossRefPubMedGoogle Scholar
  39. Martins PR, Nascimento RD, de Souza Lisboa A, Martinelli PM, d'Ávila Reis D (2014) Neuroimmunopathology of Trypanosoma cruzi-induced megaoesophagus: is there a role for mast cell proteases? Hum Immunol 75(4):302–305. CrossRefPubMedGoogle Scholar
  40. Martins PR, Nascimento RD, Lopes JG, Santos MM, Oliveira CA, Oliveira EC, Martinelli PM, d'Ávila Reis D (2015) Mast cells in the colon of Trypanosoma cruzi-infected patients: are they involved in the recruitment, survival and/or activation of eosinophils? Parasitol Res 114(5):1847–1856. CrossRefPubMedGoogle Scholar
  41. Meuser-Batista M, Corrêa JR, Carvalho VF, de Carvalho Britto CF, Moreira OC, Batista MM, Soares MJ, Filho FA, E Silva PM, Lannes-Vieira J, Silva RC, Henriques-Pons A (2011) Mast cell function and death in Trypanosoma cruzi infection. Am J Pathol 179(4):1894–1904. CrossRefPubMedPubMedCentralGoogle Scholar
  42. Moriyama M, Sato T, Inoue H, Fukuyama S, Teranishi H, Kangawa K, Kano T, Yoshimura A, Kojima M (2005) The neuropeptide neuromedin U promotes inflammation by direct activation of mast cells. J Exp Med 202(2):217–224. CrossRefPubMedPubMedCentralGoogle Scholar
  43. Nascimento RD, Martins PR, de Souza Lisboa A, Adad SJ, Morais Da Silveira AB, Reis DDA (2013) An imbalance between substance P and vasoactive intestinal polypeptide might contribute to the immunopathology of megaesophagus after Trypanosoma cruzi infection. Hum Pathol 44(2):269–276. CrossRefPubMedGoogle Scholar
  44. Nascimento CR, Andrade D, Carvalho-Pinto CE, Serra RR, Vellasco L, Brasil G, Ramos-Junior ES, da Mota JB, Almeida LN, Andrade MV, Correia Soeiro MN, Juliano L, Alvarenga PH, Oliveira AC, Sicuro FL, de Carvalho ACC, Svensjö E, Scharfstein J (2017) Mast cell coupling to the kallikrein-kinin system fuels intracardiac parasitism and worsens heart pathology in experimental Chagas disease. Front Immunol 8:840. CrossRefPubMedPubMedCentralGoogle Scholar
  45. Nassauw L, Van AD, Timmermans J-P (2007) The bidirectional communication between neurons and mast cells within the gastrointestinal tract. Auton Neurosci 133(1):91–103. CrossRefPubMedGoogle Scholar
  46. Pinheiro MC, Beraldo PS, Junqueira Júnior LF, Lopes ER, Chapadeiro E (1992) A quantitative analysis of the mastocytes and eosinophilic granulocytes in the myocardium of Wistar rats chronically infected by Trypanosoma cruzi. A contribution to the knowledge of myocardial fibrosis. Rev Soc Bras Med Trop 25(1):45–50. CrossRefPubMedGoogle Scholar
  47. Ramachandran R, Noorbakhsh F, Defea K, Hollenberg MD (2012) Targeting proteinase-activated receptors: therapeutic potential and challenges. Nat Rev Drug Discov 11(1):69–86. CrossRefPubMedGoogle Scholar
  48. Reed DE, Barajas-Lopez C, Cottrell G, Velazquez-Rocha S, Dery O, Grady EF, Bunnett NW, Vanner SJ (2003) Mast cell tryptase and proteinase-activated receptor 2 induce hyperexcitability of guinea-pig submucosal neurons. J Physiol 547(2):531–542. CrossRefPubMedPubMedCentralGoogle Scholar
  49. Ribeiro BM, Crema E, Rodrigues V Jr (2008) Analysis of the cellular immune response in patients with the digestive and indeterminate forms of Chagas’ disease. Hum Immunol 69(8):484–489. CrossRefPubMedGoogle Scholar
  50. Sand E, Themner-Persson A, Ekblad E (2009) Mast cells reduce survival of myenteric neurons in culture. Neuropharmacology 56(2):522–530. CrossRefPubMedGoogle Scholar
  51. Shea-Donohue T, Urban JFJ (2017) Neuroimmune modulation of gut function. Handb Exp Pharmavol 239:247–267. CrossRefGoogle Scholar
  52. da Silveira ABM, Arantes RME, Vago AR, Lemos EM, Adad SJ, Correa-Oliveira R, D'Avila Reis D (2005) Comparative study of the presence of Trypanosoma cruzi kDNA, inflammation and denervation in chagasic patients with and without megaesophagus. Parasitology 131(05):627–634. CrossRefPubMedGoogle Scholar
  53. da Silveira AB, Lemos EM, Adad SJ, Correa-Oliveira R, Furness JB, D'Avila Reis D (2007a) Megacolon in Chagas disease: a study of inflammatory cells, enteric nerves, and glial cells. Hum Pathol 38(8):1256–1264. CrossRefPubMedGoogle Scholar
  54. da Silveira A, D’Avila Reis D, de Oliveira EC, Neto SG, Luquetti AO, Poole D, Correa-Oliveira R, Furness JB (2007c) Neurochemical coding of the enteric nervous system in chagasic patients with megacolon. Dig Dis Sci 52(10):2877–2883. CrossRefPubMedGoogle Scholar
  55. Stead RH (1992) Innervation of mucosal immune cells in the gastrointestinal tract. Reg Immunol 4(2):91–99PubMedGoogle Scholar
  56. Stead RH, Tomioka M, Quinonez G, Simon GT, Felten SY, Bienenstock J (1987) Intestinal mucosal mast cells in normal and nematode-infected rat intestines are in intimate contact with peptidergic nerves. Proc Natl Acad Sci U S A 84(9):2975–2979. CrossRefPubMedPubMedCentralGoogle Scholar
  57. Stead RH, Dixon MF, Bramwell NH, Riddell RH, Bienenstock J (1989) Mast cells are closely apposed to nerves in the human gastrointestinal mucosa. Gastroenterology 97(3):575–585. CrossRefPubMedGoogle Scholar
  58. Steinhoff M, Vergnolle N, Young SH, Tognetto M, Amadesi S, Ennes HS, Trevisani M, Hollenberg MD, Wallace JL, Caughey GH, Mitchell SE, Williams LM, Geppetti P, Mayer E, Bunnett NW (2000) Agonists of proteinase-activated receptor 2 induce inflammation by a neurogenuc mechanism. Nat Med 6(2):151–158. CrossRefPubMedGoogle Scholar
  59. Stoyanova II, Gulubova MV (2002) Mast cells and inflammatory mediators in chronic ulcerative colitis. Acta Histochem 104(2):185–192. CrossRefPubMedGoogle Scholar
  60. Takai S, Jin D, Miyazaki M (2010) Chymase as an important target for preventing complications of metabolic syndrome. Curr Med Chem 17(28):3223–3229. CrossRefPubMedGoogle Scholar
  61. Takai S, Jin D, Miyazaki M (2012) Targets of chymase inhibitors. Expert Opin Ther Targets 15:519–512CrossRefGoogle Scholar
  62. Theoharides TC (2017) Neuroendocrinology of mast cells: challenges and controversies. Exp Dermatol 26(9):751–759. CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Patrícia Rocha Martins
    • 1
    • 2
  • Rodolfo Duarte Nascimento
    • 3
  • Aline Tomaz dos Santos
    • 1
  • Enio Chaves de Oliveira
    • 4
  • Patricia Massara Martinelli
    • 1
  • Débora d’Avila Reis
    • 1
  1. 1.Morphology DepartmentFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Centre for Education and Research at Institute Mario PennaBelo HorizonteBrazil
  3. 3.Campus Governador ValadaresFederal University of Juiz de ForaJuiz de ForaBrazil
  4. 4.Federal University of GoiasGoiâniaBrazil

Personalised recommendations