Advertisement

Parasitology Research

, Volume 117, Issue 4, pp 1131–1138 | Cite as

Molecular characterization of Hepatozoon canis from farm dogs in Pakistan

  • Abdullah S. Ahmad
  • Muhammad A. Saeed
  • Imran Rashid
  • Kamran Ashraf
  • Wasim Shehzad
  • Rebecca J. Traub
  • Gad Baneth
  • Abdul Jabbar
Original Paper

Abstract

Hepatozoon canis is a tick-borne pathogen of canids, which is distributed worldwide. However, very little is known about this protozoan parasite in Pakistan. This study provides the first molecular evidence of H. canis from farm dogs from three agro-ecological zones of Punjab, Pakistan. A conventional PCR targeting the 18S rRNA gene was used to characterize H. canis from farm dogs from three districts, namely Kasur, Rawalpindi, and Muzaffargarh, in Punjab. Of 341 blood samples tested, 155 (45.5%) were positive for H. canis, 73 (61.3%) from Kasur, 46 (42.5%) from Rawalpindi, and 36 (31.5%) from Muzaffargarh. Phylogenetic analyses revealed that 18S rRNA sequences of H. canis from this study clustered in three clades with those of H. canis from previously published studies to the exclusion of all other Hepatozoon spp. included in the analysis. This study provides the first insight into H. canis from farm dogs in Pakistan. Furthermore, it lays a foundation for future studies of the parasite to assess the impact of canine hepatozoonosis in dogs from various agro-ecological zones in Pakistan where pet ownership of dogs is increasing.

Keywords

Hepatozoon canis 18S rRNA gene molecular characterization Prevalence Dogs Pakistan 

Notes

Acknowledgements

Abdullah S. Ahmad is grateful to the Higher Education Commission of Pakistan for the financial assistance under the International Research Support Initiative Program (IRSIP). We would like to thank Dr. Muhammad Luqman Sohail (The Islamia University, Bahawalpur, Pakistan) for his assistance in sample collection.

Compliance with ethical standards

This study was approved by the animal ethics committee of the University of Veterinary and Animal Sciences, Lahore, Pakistan.

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

436_2018_5790_MOESM1_ESM.docx (20 kb)
Supplementary fig. 1 (DOCX 19 kb)

References

  1. Abd Rani PA, Irwin PJ, Coleman GT, Gatne M, Traub RJ (2011) A survey of canine tick-borne diseases in India. Parasit Vectors 4(1):141.  https://doi.org/10.1186/1756-3305-4-141 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Alho AM, Lima C, Latrofa MS, Colella V, Ravagnan S, Capelli G, Madeira de Carvalho L, Cardoso L, Otranto D (2017) Molecular detection of vector-borne pathogens in dogs and cats from Qatar. Parasit Vectors 10:298CrossRefPubMedPubMedCentralGoogle Scholar
  3. Aydin MF, Sevinc F, Sevinc M (2015) Molecular detection and characterization of Hepatozoon spp. in dogs from the central part of Turkey. Ticks Tick Borne Dis 6:388–392CrossRefPubMedGoogle Scholar
  4. Baneth G (2011) Perspectives on canine and feline hepatozoonosis. Vet Parasitol 181(1):3–11.  https://doi.org/10.1016/j.vetpar.2011.04.015 CrossRefPubMedGoogle Scholar
  5. Baneth G, Samish M, Shkap V (2007) Life cycle of Hepatozoon canis (Apicomplexa: Adelorina: Hepatozonoidae) in the ticks Rhipicephalus sanguineus and domestic dogs (Canis familiaris). J Parasitol 93:283–299CrossRefPubMedGoogle Scholar
  6. Baneth G, Sheiner A, Eyal O, Hahn S, Beaufils JP, Anug Y (2013) Redescription of Hepatozoon felis (Apicomplexa: Hepatozoidae) based on phylogenetic analysis, tissue and blood form morphology, and possible transplacental transmission. Parasit Vectors 6(1):102.  https://doi.org/10.1186/1756-3305-6-102 CrossRefPubMedPubMedCentralGoogle Scholar
  7. Baneth G, Shkap V, Samish M, Pipano E, Savitsky I (1998) Antibody response to Hepatozoon canis in experimentally infected dogs. Vet Parasitol 74:299–305CrossRefPubMedGoogle Scholar
  8. Criado-Fornelio A, Buling A, Cunha-Filho NA, Ruas JL, Farias NAR, Rey-Valeiron C, Pingret JL, Etievant M, Barba-Carretero JC (2007) Development and evaluation of a quantitative PCR assay for detection of Hepatozoon sp. Vet Parasitol 150(4):352–356.  https://doi.org/10.1016/j.vetpar.2007.09.025 CrossRefPubMedGoogle Scholar
  9. Criado-Fornelio A, Buling A, Pingret JL, Etievant M, Boucraut-Baralon C, Alongi A, Agnone A, Torina A (2009) Hemoprotozoa of domestic animals in France: prevalence and molecular characterization. Vet Parasitol 159(1):73–76.  https://doi.org/10.1016/j.vetpar.2008.10.012 CrossRefPubMedGoogle Scholar
  10. Criado-Fornelio A, Martinez-Marcos A, Buling-Saraña A, Barba-Carretero JC (2003) Molecular studies on Babesia, Theileria and Hepatozoon in southern Europe. Vet Parasitol 114(3):173–194.  https://doi.org/10.1016/S0304-4017(03)00141-9 CrossRefPubMedGoogle Scholar
  11. Dalimi A, Jameie F, Mohammadiha A, Barati M, Molaei S (2017) Molecular detection of Hepatozoon canis in dogs of Ardabil Province, northwest of Iran. Arch Razi Inst 72:197–201Google Scholar
  12. Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Meth 9(8):772–772.  https://doi.org/10.1038/nmeth.2109 CrossRefGoogle Scholar
  13. de Miranda RL, O'Dwyer LH, de Castro JR, Metzger B Rubini AS, Mundim AV, Eyal O, Talmi-Frank D, Cury MC, Baneth G (2014) Prevalence and molecular characterization of Hepatozoon canis in dogs from urban and rural areas in Southeast Brazil. Res Vet Sci 97(2):325–328.  https://doi.org/10.1016/j.rvsc.2014.06.015 CrossRefPubMedGoogle Scholar
  14. Demoner LDC, Magro NM, da Silva MRL, de Paula Antunes JMA, Calabuig CIP, O’Dwyer LH (2016) Hepatozoon spp. infections in wild rodents in an area of endemic canine hepatozoonosis in southeastern Brazil. Ticks Tick Borne Dis 7(5):859–864.  https://doi.org/10.1016/j.ttbdis.2016.04.002 CrossRefPubMedGoogle Scholar
  15. Dantas-Torres F (2010) Biology and ecology of the brown dog tick, Rhipicephalus sanguineus. Parasit Vectors 3(1):26–26.  https://doi.org/10.1186/1756-3305-3-26 CrossRefPubMedPubMedCentralGoogle Scholar
  16. Edgar RC (2004) MUSCLE: multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Res 32(5):1792–1797.  https://doi.org/10.1093/nar/gkh340 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Farooqi AB, Khan AH, Mir H (2005) Climate change perspective in Pakistan. Pak J Meteorol 2Google Scholar
  18. Giannelli A, Lia RP, Annoscia G, Buonavoglia C, Lorusso E, Dantas-Torres F, Baneth G, Otranto D (2017) Rhipicephalus turanicus, a new vector of Hepatozoon canis. Parasitology 144(06):730–737.  https://doi.org/10.1017/S003118201600250X CrossRefPubMedGoogle Scholar
  19. Gomes LA, Moraes PHG, do Nascimento LCS, O’Dwyer LH, MRT N, AdRP R, DCF A, Gonçalves EC (2016) Molecular analysis reveals the diversity of Hepatozoon species naturally infecting domestic dogs in a northern region of Brazil. Ticks Tick Borne Dis 7(6):1061–1066.  https://doi.org/10.1016/j.ttbdis.2016.09.008 CrossRefPubMedGoogle Scholar
  20. Gonen L, Strauss-Ayali D, Shkap V, Vincent-Johnson N, Macintire DK, Baneth G (2004) An enzyme-linked immunosorbent assay for antibodies to Hepatozoon canis. Vet Parasitol 122(2):131–139.  https://doi.org/10.1016/j.vetpar.2004.03.021 CrossRefPubMedGoogle Scholar
  21. Hall T (2011) BioEdit: an important software for molecular biology. GERF Bull Biosci 2:60–61Google Scholar
  22. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogenetic trees. Bioinformatics 17(8):754–755.  https://doi.org/10.1093/bioinformatics/17.8.754 CrossRefPubMedGoogle Scholar
  23. Ibrahim NDG, Rahamathulla PM, Njoku CO (1989) Neutrophil myeloperoxidase deficiency associated with canine hepatozoonosis. Int J Parasitol 19(8):915–918.  https://doi.org/10.1016/0020-7519(89)90119-7 CrossRefPubMedGoogle Scholar
  24. Inokuma H, Okuda M, Ohno K, Shimoda K, Onishi T (2002) Analysis of the 18S rRNA gene sequence of a Hepatozoon detected in two Japanese dogs. Vet Parasitol 106:265–271CrossRefPubMedGoogle Scholar
  25. Jittapalapong S, Rungphisutthipongse O, Maruyama S, Schaefer JJ, Stich RW (2006) Detection of Hepatozoon canis in stray dogs and cats in Bangkok, Thailand. Ann N Y Acad Sci 1081(1):479–488.  https://doi.org/10.1196/annals.1373.071 CrossRefPubMedGoogle Scholar
  26. Johnson EM, Panciera RJ, Allen KE, Sheets ME, Beal JD, Ewing SA, Little SE (2009) Alternate pathway of infection with Hepatozoon americanum and the epidemiologic importance of predation. J Vet Int Med 23(6):1315-1318Google Scholar
  27. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28(12):1647–1649.  https://doi.org/10.1093/bioinformatics/bts199 CrossRefPubMedPubMedCentralGoogle Scholar
  28. Kongklieng A, Intapan PM, Boonmars T, Thanchomnang T, Janwan P, Sanpool O, Lulitanond V, Taweethavonsawat P, Chungpivat S, Maleewong W (2015) Detection of Babesia canis vogeli and Hepatozoon canis in canine blood by a single-tube real-time fluorescence resonance energy transfer polymerase chain reaction assay and melting curve analysis. J Vet Diagn Investig 27(2):191–195.  https://doi.org/10.1177/1040638714567935 CrossRefGoogle Scholar
  29. Loftis AD, Kelly PJ, Freeman MD, Fitzharris S, Beeler-Marfisi J, Wang C (2013) Tick-borne pathogens and disease in dogs on St. Kitts, West Indies. Vet Parasitol 196(1-2):44–49.  https://doi.org/10.1016/j.vetpar.2013.01.024 CrossRefPubMedGoogle Scholar
  30. Luton K, Gleeson M, Johnson AM (1995) rRNA gene sequence heterogeneity among Toxoplasma gondii strains. Parasitol Res 81:310–315CrossRefPubMedGoogle Scholar
  31. Maddison WP (2008) Mesquite: a modular system for evolutionary analysis. Evolution 62:1103–1118CrossRefGoogle Scholar
  32. Maia C, Ferreira A, Nunes M, Vieira ML, Campino L, Cardoso L (2014) Molecular detection of bacterial and parasitic pathogens in hard ticks from Portugal. Ticks Tick Borne Dis 5(4):409–414.  https://doi.org/10.1016/j.ttbdis.2014.01.009 CrossRefPubMedGoogle Scholar
  33. Maps (2017) Maps of world. https://www.mapsofworld.com/lat_long/pakistan-lat-long.html/ (Accessed 01 October 2017).
  34. Mathew JS, Ewing SA, Panciera RJ, Woods JP (1998) Experimental transmission of Hepatozoon americanum Vincent-Johnson et al., 1997 to dogs by the Gulf Coast tick, Amblyomma maculatum Koch. Vet Parasitol 80(1):1–14Google Scholar
  35. Mathew JS, Van Den Bussche RA, Ewing SA, Malayer JR, Latha BR, Panciera RJ (2000) Phylogenetics relationship of Hepatozoon (Apicomplexa: Adeleornia) based on molecular, morphologic, and life cycle character. J Parasitol 86:366–372CrossRefPubMedGoogle Scholar
  36. Murata T, Imoue M, Tateyama S, Taura Y, Nakama S (1993) Vertical transmission of Hepatozoon canis in dogs. J Vet Med Sci 55:867–868CrossRefPubMedGoogle Scholar
  37. Otranto D, Dantas-Torres F, Weigl S, Latrofa MS, Stanneck D, Decaprariis D, Capelli G, Baneth G (2011) Diagnosis of Hepatozoon canis in young dogs by cytology and PCR. Parasit Vectors 4:55CrossRefPubMedPubMedCentralGoogle Scholar
  38. Pawar RM, Poornachandar A, Srinivas P, Rao KR, Lakshmikantan U, Shivaji S (2012) Molecular characterization of Hepatozoon spp. infection in endangered Indian wild felids and canids. Vet Parasitol 186:475–479CrossRefPubMedGoogle Scholar
  39. PMD 2016. Pakistan Metrological Department. http://www.pmd.gov.pk/ (accessed 01 October, 2017).
  40. Potter TM, Macintire DK (2010) Hepatozoon americanum: an emerging disease in the south-central/southeastern United States. J Vet Emerg Crit Care 20:70–76CrossRefGoogle Scholar
  41. Qamar M, Malik MI, Latif M, Ain Q, Aktas M, Shaikh RS, Iqbal F (2017) Molecular detection and prevalence of Hepatozoon canis in dogs from Punjab (Pakistan) and hematological profile of infected dogs. Vector Borne Zoonotic Dis 17:179–184CrossRefPubMedGoogle Scholar
  42. Rojas A, Rojas D, Montenegro V, Gutiérrez R, Yasur-Landau D, Baneth G (2014) Vector-borne pathogens in dogs from Costa Rica: first molecular description of Babesia vogeli and Hepatozoon canis infections with a high prevalence of monocytic ehrlichiosis and the manifestations of co-infection. Vet Parasitol 199:121–128CrossRefPubMedGoogle Scholar
  43. Ronquist F, Huelsenbeck JP (2003) MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  44. Rubini AS, dos Santos PK, Cavalcante GG, Ribolla PEM, O’Dwyer LH (2005) Molecular identification and characterization of canine Hepatozoon species from Brazil. Parasitol Res 97:91–93CrossRefPubMedGoogle Scholar
  45. Rubini AS, Paduan KS, Martins TF, Labruna MB, O’Dwyer LH (2009) Acquisition and transmission of Hepatozoon canis (Apicomplexa: Hepatozoidae) by the tick Amblyomma ovale (Acari: Ixodidae). Vet Parasitol 164:324–327CrossRefPubMedGoogle Scholar
  46. Singla LD, Sumbria D, Mandhotra A, Bal MS, Kaur P (2016) Critical analysis of vector-borne infections in dogs: Babesia vogeli, Babesia gibsoni, Ehrlichia canis and Hepatozoon canis in Punjab, India. Acta Parasitol 61:697–706CrossRefPubMedGoogle Scholar
  47. Smith TG (1996) The genus Hepatozoon (Apicomplexa: Adeleina). J. Parasitol 82:565–585CrossRefPubMedGoogle Scholar
  48. Spolidorio MG, Labruna MB, Zago AM, Donatele DM, Caliari KM, Yoshinari NH (2009) Hepatozoon canis infecting dogs in the State of Espírito Santo, southeastern Brazil. Vet Parasitol 163:357–361CrossRefPubMedGoogle Scholar
  49. Stich RW, Blagburn BL, Bowman DD, Carpenter C, Cortinas MR, Ewing SA, Foley D, Foley JE, Gaff H, Hickling GJ, Lash RR, Little SE, Lund C, Lund R, Mather TN, Needham GR, Nicholson WL, Sharp J, Varela-Stokes A, Wang D (2014) Quantitative factors proposed to influence the prevalence of canine tick-borne disease agents in the United States. Parasit Vectors 7:417CrossRefPubMedPubMedCentralGoogle Scholar
  50. Sutherst RW (2004) Global change and human vulnerability to vector-borne diseases. Clin Microbiol Rev. 17:136–173CrossRefPubMedPubMedCentralGoogle Scholar
  51. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 4.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  52. Ul-Hasan M, Abubakar M, Muhammad G, Khan MN, Hussain M (2012) Prevalence of tick infestation (Rhipicephalus sanguineus and Hyalomma anatolicum anatolicum) in dogs in Punjab, Pakistan. Vet Italia 48:95–98Google Scholar
  53. Vojta L, Mrljak V, Ćurković S, Živičnjak T, Marinculić A, Beck R (2009) Molecular epizootiology of canine hepatozoonosis in Croatia. Int J Parasitol 39:1129–1136CrossRefPubMedGoogle Scholar
  54. Werle E, Schneider C, Renner M, Völker M, Fiehn W (1994) Convenient single-step, one tube purification of PCR products for direct sequencing. Nucleic Acids Res 22(20):4354Google Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Department of Veterinary Biosciences, Faculty of Veterinary and Agricultural SciencesThe University of MelbourneMelbourneAustralia
  2. 2.Department of Parasitology, Faculty of Veterinary SciencesUniversity of Veterinary and Animal SciencesLahorePakistan
  3. 3.Institute of Biochemistry and Biotechnology, Faculty of BiosciencesUniversity of Veterinary and Animal SciencesLahorePakistan
  4. 4.The Koret School of Veterinary MedicineThe Hebrew University of JerusalemJerusalemIsrael

Personalised recommendations