Advertisement

Parasitology Research

, Volume 117, Issue 4, pp 1115–1129 | Cite as

Protective vaccination alters gene expression of the liver of Balb/c mice in response to early prepatent blood-stage malaria of Plasmodium chabaudi

  • Saleh Al-Quraishy
  • Mohamed A. Dkhil
  • Abdel Azeem S. Abdel-Baki
  • Denis Delic
  • Frank Wunderlich
Original Paper
  • 136 Downloads

Abstract

Current knowledge about liver responses to blood-stage malaria and their modulation by vaccination is still unclear. This study investigated effects of protective vaccination on liver gene and lincRNA expression of Balb/c mice at early prepatency of Plasmodium chabaudi blood-stage malaria. When a blood-stage vaccine was used to induce > 80% survival of otherwise lethal malaria, significant differences (p < 0.01) were detectable in global liver gene expression between vaccination-protected (potentially surviving) and non-protected non-vaccinated mice on day 1 p.i.. In the livers of protected mice, gene expression microarrays identified 224 and 419 genes, whose expression was up- and downregulated by > 3-fold, respectively. There were 24 genes upregulated by > 10-fold, including 10 IFN-inducible genes encompassing GTPases Irgm1, 2, and 3, and guanylate-binding protein Gbp11, the IL-1 decoy receptors Il1f9 and Il1ra1, the Il6 gene, and the gene for facilitated glucose transportation. Moreover, the IL-18 decoy receptor gene Il18bp, Gzmb, the genes Lif and Osmr encoding proteins of the IL-6 family, and the taurine transporter gene Slc6a6 were expressed > 3-fold in vaccinated mice. The genes Gbp10, 6, 4 were expressed by > 50% in vaccination-protected than in non-vaccinated mice. In addition, 43 lincRNA species were up- and 36 downregulated. Our data suggested novel regulatory elements of potential anti-malaria activity activated by protective vaccination in the liver, evidenced in response to early prepatent infections in vaccination-protected mice of otherwise lethal blood-stage malaria of P. chabaudi.

Keywords

Protective vaccination Blood-stage malaria Prepatent infections Plasmodium chabaudi Liver Gene expression 

Notes

Funding information

This project was funded by the National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia, awarded number (13-B101206-02).

Supplementary material

436_2018_5789_MOESM1_ESM.docx (23 kb)
Table S1 (DOCX 23.4 kb)
436_2018_5789_MOESM2_ESM.docx (21 kb)
Table S2 (DOCX 20.5 kb)
436_2018_5789_MOESM3_ESM.docx (16 kb)
Table S3 (DOCX 16.1 kb)
436_2018_5789_MOESM4_ESM.docx (31 kb)
Table S4 (DOCX 31.3 kb)
436_2018_5789_MOESM5_ESM.docx (32 kb)
Table S5 (DOCX 32 kb)
436_2018_5789_MOESM6_ESM.docx (30 kb)
Table S6 (DOCX 30.1 kb)
436_2018_5789_MOESM7_ESM.docx (39 kb)
Table S7 (DOCX 39.3 kb)
436_2018_5789_MOESM8_ESM.docx (17 kb)
Table S8 (DOCX 16.9 kb)
436_2018_5789_MOESM9_ESM.docx (16 kb)
Table S9 (DOCX 16.4 kb)

References

  1. Al-Quraishy SA, Dkhil MA, Abdel-Baki AA, Delic D, Wunderlich F (2016) Protective vaccination against blood-stage malaria of Plasmodium chabaudi: differential gene expression in the liver of Balb/c mice toward the end of crisis phase. Front Microbiol 7:1087CrossRefPubMedPubMedCentralGoogle Scholar
  2. Al-Quraishy S, Dkhil MA, Abdel-Baki AS, Ghanjati F, Erichsen L, Santourlidis S, Wunderlich F, Araúzo-Bravo MJ (2017) Protective vaccination and blood-stage malaria modify DNA methylation of gene promoters in the liver of Balb/c mice. Parasitol Res 116(5):1463–1477.  https://doi.org/10.1007/s00436-017-5423-0 CrossRefPubMedGoogle Scholar
  3. Birkitt AJ (2016) Status of vaccine research and development of vaccines for malaria. Vaccine 34(26):2915–2920.  https://doi.org/10.1016/j.vaccine.2015.12.074 CrossRefGoogle Scholar
  4. Cramer JP, Lepenies P, Kamena F, Hölscher C, Freudenberg MA, Burchard GD, Wagner H, Kirschning CJ, Liu X, Seeberger PH, Jacobs T (2008) MyD88/IL-18-dependent pathways rather than TLRs control early parasitemia in non-lethal Plasmodium yoelii infection. Microbes Infect 10(12-13):1259–1265.  https://doi.org/10.1016/j.micinf.2008.07.024 CrossRefPubMedGoogle Scholar
  5. Degrandi D, Konemann C, Beuter-Gunia C, Kresse A, Würthner J, Kurig S, Beer S, Pfeffer K (2007) Extensive characterization of IFN-induced GTPases mGBP1 to mGBP10 involved in host defense. J Immunol 179(11):7729–7740.  https://doi.org/10.4049/jimmunol.179.11.7729 CrossRefPubMedGoogle Scholar
  6. Del Portillo HA, Ferrer M, Brugat T, Martin-Jaular L, Langhorne J, Lacerda MVG (2012) The role of the spleen in malaria. Cell Microbiol 14(3):343–355.  https://doi.org/10.1111/j.1462-5822.2011.01741.x CrossRefPubMedGoogle Scholar
  7. Delic D, Warskulat U, Borsch E, Al-Qahtani S, Al-Quraishi S, Häussinger D, Wunderlich F (2010) Loss of ability to self-heal malaria upon taurine transporter deletion. Infect Immun 78:1642–1649CrossRefPubMedPubMedCentralGoogle Scholar
  8. Dkhil MA, Al-Quraishy SA, Abdel-Baki AS, Delic D, Wunderlich F (2016) Differential miRNA expression in the liver of Balb/c mice protected by vaccination during crisis of Plasmodium chabaudi blood-stage malaria. Front Microbiol 7:2155PubMedGoogle Scholar
  9. Grangeiro de Carvalho EL, Bonin M, Kremsner PG, Kun JF (2011) Plasmodium falciparum-infected erythrocytes and IL-12/IL-18 induce diverse transcriptomes in human NK cells: IFN-α/β pathway versus TREM signaling. PLoS One 6:e24693CrossRefGoogle Scholar
  10. Engwerda CR, Beattie L, Amante FH (2005) The importance of the spleen in malaria. Trends Parasitol 21:75–80CrossRefPubMedGoogle Scholar
  11. Ewen CL, Kane KP, Bleakley RC (2012) A quarter century of granzymes. Cell Death Diff 19(1):28–35.  https://doi.org/10.1038/cdd.2011.153 CrossRefGoogle Scholar
  12. Fontaine AI, Bourdo S, Belghazi M, Pophillat M, Fourquet P, Granjeaud S, Torrentino-Madamet M, Rogier C, Fusai T, Almeras L (2012) Plasmodium falciparum infection-induced changes in erythrocyte membrane proteins. Parasitol Res 110:545–556CrossRefPubMedGoogle Scholar
  13. Gosling R, von Seidlein L (2016) The future of the RTS,S/AS01 malaria vaccine. An alternative development plan. PLoS Med 13(4):e1001994.  https://doi.org/10.1371/journal.pmed.1001994 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Halbroth BR, Draper SJ (2015) Recent developments in malaria vaccinology. Adv Parasitol 88:1–49.  https://doi.org/10.1016/bs.apar.2015.03.001 CrossRefPubMedGoogle Scholar
  15. Hasko G, Pacher P (2008) A2A receptors in inflammation and injury: lessons learned from transgenic mice. J Leukoc Biol 83(3):447–455.  https://doi.org/10.1189/jlb.0607359 CrossRefPubMedGoogle Scholar
  16. Heinrich PC, Behrmann I, Haan S, Hermanns HM, Müller-Neven G, Schaper F (2003) Principles of interleukin (IL)-6-type cytokine signaling and its regulation. Biochem J 374(1):1–20.  https://doi.org/10.1042/bj20030407 CrossRefPubMedPubMedCentralGoogle Scholar
  17. Henry SC, Schmidt EA, Fessler MB, Taylor GA (2014) Palmitoylation of the immunity related GTPase, Irgm1: impact on membrane localization and ability to promote mitochondrial fission. PLoS One 9(4):e95021.  https://doi.org/10.1371/journal.pone.0095021 CrossRefPubMedPubMedCentralGoogle Scholar
  18. Hoffman SL, Vekemans J, Richie TL, Duffy PE (2015) The march toward malaria vaccines. Am J Prev Med 49(6):S319–S333.  https://doi.org/10.1016/j.amepre.2015.09.011 CrossRefPubMedPubMedCentralGoogle Scholar
  19. Jabbarzare M, Chin VK, Talib H, Yam MF, Adam SK, Hassan H, Abdul Majid R, Mat Taib CN, Mohd Moklas MA, Taufik Hidayat M, Mohd Sidek H, Basir R, Author information (2015) Interleukin-18 antagonism improved histopathological conditions of malaria infection in mice. Iran J Parasitol 10(3):389–401PubMedPubMedCentralGoogle Scholar
  20. Jason J, Archibald LK, Nwanyanwu OC, Bell M, Buchanan I, Larned J, Kazembe PN, Dobbie H, Parekh B, Byrd MG, Eick A, Han A, Jarvis WR (2001) Cytokines and malaria parasitemia. Clin Immunol 100(2):208–218.  https://doi.org/10.1006/clim.2001.5057 CrossRefPubMedGoogle Scholar
  21. Kern P, Hemmer VJ, Van Damme J, Gruss J, Dietrich M (1989) Elevated tumor necrosis factor alpha and interleukin-6 serum levels as markers for complicated Plasmodium falciparum malaria. Am J Med 87(2):139–143.  https://doi.org/10.1016/S0002-9343(89)80688-6 CrossRefPubMedGoogle Scholar
  22. Kim BH, Shenoy AR, Kumar P, Das R, Tiwari S, MacMicking JD (2011) A family of IFN-gammma-inducible 65-kD GTPases protects against bacterial infection. Science 332(6030):717–721.  https://doi.org/10.1126/science.1201711 CrossRefPubMedGoogle Scholar
  23. Kim MS, Sweeney TR, Shigenaga JK, Chui LG, Moser A, Grunfeld C, Feingold KR (2007) Tumor necrosis factor and interleukin 1 decrease RXRalpha, PPARalpha, PPARgamma, LXRalpha, and the coactivators SRC-1, PGC-1alpha, and PGC-1beta in liver cells. Metabolism 56(2):267–279.  https://doi.org/10.1016/j.metabol.2006.10.007 CrossRefPubMedGoogle Scholar
  24. Kojima S, Nagamine Y, Hayano M, Looareesuwan S, Nakanishi K (2004) A potential role of interleukin 18 in severe P. falciparum malaria. Acta Trop 89:279–284CrossRefPubMedGoogle Scholar
  25. Kravets E, Degrandi D, Ma Q, Peulen TO, Klümpers V, Felekyan S, Kühnemuth R, Weidtkamp-Peters S, Seidel CA, Pfeffer K (2016) Guanylate binding proteins (GBPs) directly attack via supramolecular complexes. elife 5:e11479CrossRefPubMedPubMedCentralGoogle Scholar
  26. Kresse A, Konermann C, Degrandi D, Beuter-Gunia C, Wuerthner J, Pfeffer K, Beer S (2008) Analyses of murine GBP homology clusters based on in silico, in vitro and in vivo studies. BMC Genomics 9(1):158.  https://doi.org/10.1186/1471-2164-9-158 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Krücken J, Delić D, Pauen H, Wojtalla A, El-Khadragy M, Dkhil MA, Mossmann H, Wunderlich F (2009) Augmented particle trapping and attenuated inflammation in the liver by protective vaccination against Plasmodium chabaudi malaria. Malaria J 8(1):54–64.  https://doi.org/10.1186/1475-2875-8-54 CrossRefGoogle Scholar
  28. Lappas CM, Day YJ, Marshall MA, Engelhard VH, Linden J (2006) Adenosine A2A receptor activation reduces hepatic ischemia reperfusion injury by inhibiting CD1d-dependent NKT cell activation. J Exp Med 203(12):2639–2648.  https://doi.org/10.1084/jem.20061097 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Lee SJ, Park SY, Jung MY, Bae SM, Kim IS (2011) Mechanism for phosphatidylserine-dependent erythrophagocytosis in mouse liver. Blood 117(19):5215–5223.  https://doi.org/10.1182/blood-2010-10-313239 CrossRefPubMedGoogle Scholar
  30. Liesenfeld O, Parvanova I, Zerrahn J, Han SJ, Heinrich F, Muñoz M, Kaiser F, Aebischer T, Buch T, Waisman A, Reichmann G, Utermöhlen O, von Stebut E, von Loewenich FD, Bogdan C, Specht S, Saeftel M, Hoerauf A, Mota MM, Könen-Waisman S, Kaufmann SH, Howard JC (2011) The IFN-γ-inducible GTPase, Irga6, protects mice against Toxoplasma gondii but not against Plasmodium berghei and some other intracellular pathogens. PLoS One 6(6):e20568.  https://doi.org/10.1371/journal.pone.0020568 CrossRefPubMedPubMedCentralGoogle Scholar
  31. Liu B, Gulati AS, Cantillana V, Henry SC, Schmidt EA, Daniell X, Grossniklaus E, Schoenborn AA, Sartor RB, Taylor GA (2013) Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation. Am J Physiol Gastrointest Liver Physiol 305(8):G573–G584.  https://doi.org/10.1152/ajpgi.00071.2013 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Livak KJ, Schmittgen TD (2002) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25:402–408CrossRefGoogle Scholar
  33. Longley R, Smith C, Fortin A, Berghout J, McMorran B, Burgio G, Foote S, Gros P (2011) Host resistance to malaria: using mouse models to explore the host response. Mamm Genome 22(1-2):32–42.  https://doi.org/10.1007/s00335-010-9302-6 CrossRefPubMedGoogle Scholar
  34. Lyke KE, Burges R, Cissoko Y, Sangare L, Dao M, Diarra I, Kone A, Harley R, Plowe CV, Doumbo OK, Sztein MB (2004) Serum levels of the proinflammatory cytokines interleukin-1beta (IL-1beta), IL-6, IL-8, IL-10, tumor necrosis factor alpha, IL-12(p70) in Malian children with severe Plasmodium falciparum malaria and matched uncomplicated or healthy controls. Infect Immun 72(10):5630–5637.  https://doi.org/10.1128/IAI.72.10.5630-5637.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Maric-Biresev J, Hunn JP, Krut O, Helms JB, Martens S, Howard JC (2016) Loss of the interferon-gamma-inducible regulatory immunity-related GTPase (IRG), Irgm1, causes activation of effector IRG proteins on lysosomes, damaging lysosomal function and predicting the dramatic susceptibility of Irgm1-deficient mice to infection. BMC Biol 14(1):33.  https://doi.org/10.1186/s12915-016-0255-4 CrossRefPubMedPubMedCentralGoogle Scholar
  36. McMahan CJ, Slack JL, Mosley B (1991) A novel IL-1 receptor, cloned from B cells by mammalian expression, is expressed in many cell types. EMBO J 10(10):2821–2832PubMedPubMedCentralGoogle Scholar
  37. Meunier E, Broz P (2016) Interferon-inducible GTPases in cell autonomous and innate immunity. Cell Microbiol 18(2):168–180.  https://doi.org/10.1111/cmi.12546 CrossRefPubMedGoogle Scholar
  38. Miura K (2016) Progress and prospects for blood-stage malaria vaccines. Expert Rev Vaccines 3:1–17Google Scholar
  39. Otogawa K, Kinoshita K, Fujii H, Sakabe M, Shiga R, Nakatani K, Ikeda K, Nakajima Y, Ikura Y, Ueda M, Arakawa T, Hato F, Kawada N (2007) Erythrophagocytosis by liver macrophages (Kupffer cells) promotes oxidative stress, inflammation, and fibrosis in a rabbit model of steatohepatitis: implications for the pathogenesis of human nonalcoholic steatohepatitis. Am J Pathol 17:967–980CrossRefGoogle Scholar
  40. Pilla DM, Hagar JA, Haldar AK, Mason AD, Degrandi D, Pfeffer K (2014) Guanylate binding proteins promote caspase-11-dependent pyroptosis in response to cytopasmic LPS. Proc Natl Acad Sci U S A 111:6048–6051CrossRefGoogle Scholar
  41. Pilla-Moffett D, Barber MF, Taylor GA, Coers J (2016) Interferon-inducible GTPases in host resistance, inflammation and disease. J Mol Biol 428(17):3495–3513.  https://doi.org/10.1016/j.jmb.2016.04.032 CrossRefPubMedPubMedCentralGoogle Scholar
  42. Robinson LJ, D'Ombrain MC, Stanisic DI, Taraika J, Bernard N, Richards JS, Beeson JG, Tavul L, Michon P, Mueller I, Schofield L (2009) Cellular tumor necrosis factor, gamma interferon, interleukin-6 responses as correlates of immunity and risk of clinical Plasmodium falciparum in children from Papua New Guinea. Infec Immun 77(7):3033–3043.  https://doi.org/10.1128/IAI.00211-09 CrossRefGoogle Scholar
  43. Scheller J, Chalaria A, Schmidt-Arras D, Rose-John S (2011) The pro-and anti-inflammatory properties of the cytokine interleukin-6. Biochim Biophys Acta 1813(5):878–888.  https://doi.org/10.1016/j.bbamcr.2011.01.034 CrossRefPubMedGoogle Scholar
  44. Schneider WM, Chevillotte MD, Rice CM (2014) Interferon-stimulated genes: a complex web of host defenses. Ann Rev Immunol 32(1):513–545.  https://doi.org/10.1146/annurev-immunol-032713-120231 CrossRefGoogle Scholar
  45. Stegmann KA, De Souza JB, Riley EM (2015) IL-18-induced expression of high-affinity IL-2R on murine NK cells is essential for NK-cell IFNgamma production during murine Plasmodium yoelii infection. Eur J Immunol 45(12):3431–3440.  https://doi.org/10.1002/eji.201546018 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Stephens R, Culleton RL, Lamb TJ (2012) The contribution of Plasmodium chabaudi to our understanding of malaria. Trends Parasitol 28(2):73–82.  https://doi.org/10.1016/j.pt.2011.10.006 CrossRefPubMedGoogle Scholar
  47. Takashi K, Yan I, Haga H, Patel T (2014) Long noncoding RNA in liver diseases. Hepatology 60(2):744–753.  https://doi.org/10.1002/hep.27043 CrossRefGoogle Scholar
  48. Terpstra V, van Berkel TJ (2000) Scavenger receptors on liver Kupffer cells mediate the in vitro uptake of oxidatively damaged red blood cells in mice. Blood 15:2157–2163Google Scholar
  49. Theurl I, Hilgendorf I, Nairz M, Tymoszuk P, Haschka D, Asshoff M, He S, Gerhardt LM, Holderried TA, Seifert M, Sopper S, Fenn AM, Anzai A, Rattik S, McAlpine C, Theurl M, Wieghofer P, Iwamoto Y, Weber GF, Harder NK, Chousterman BG, Arvedson TL, McKee M, Wang F, Lutz OM, Rezoagli E, Babitt JL, Berra L, Prinz M, Nahrendorf M, Weiss G, Weissleder R, Lin HY, Swirski FK (2016) On-demand erythrocyte disposal and iron recycling requires transient macrophages in the liver. Nat Med 22(8):945–951.  https://doi.org/10.1038/nm.4146 CrossRefPubMedPubMedCentralGoogle Scholar
  50. Vestal DJ, Jeyaratnam JA (2011) The guanylate-binding proteins: emerging insights into the biochemical properties and functions of this family of large interferon-induced guanosine triphosphatase. J Interf Cytokine Res 31(1):89–97.  https://doi.org/10.1089/jir.2010.0102 CrossRefGoogle Scholar
  51. Voskoboinik I, Whisstock JC, Trapani JA (2015) Perforin and granzymes: function, dysfunction and human pathology. Nature Rev Immunol 15(6):388–409.  https://doi.org/10.1038/nri3839 CrossRefGoogle Scholar
  52. Wensink AC, Hack CE, Bovenschen N (2015) Granzymes regulate proinflammatory cytokine responses. J Immunol 194(2):491–497.  https://doi.org/10.4049/jimmunol.1401214 CrossRefPubMedGoogle Scholar
  53. WHO (2015) World Malaria Report 2015, released in December 2015 by World Health Organization 2015. WHO Document Production Services, Geneva www.who.int/malaria/publications/world-malaria-report-2015/report/en Google Scholar
  54. Wunderlich F, Al-Quraishy S, Dkhil M (2014) Liver-inherent immune system: its role in blood-stage malaria. Front Microbiol 5:559CrossRefPubMedPubMedCentralGoogle Scholar
  55. Wunderlich F, Brenner H, Helwig M (1988) Plasmodium chabaudi malaria: protective immunization with surface membranes of erythrocytes infected with Plasmodium chabaudi. Infect Immun 56:3326–3328PubMedPubMedCentralGoogle Scholar
  56. Wunderlich CM, Delić D, Behnke K, Meryk A, Ströhle P, Chaurasia B, Al-Quraishy S, Wunderlich F, Brüning JC, Wunderlich FT (2012) Inhibition of IL-6 trans-signaling protects from malaria-induced lethality in mice. J Immunol 188(9):4141–4144.  https://doi.org/10.4049/jimmunol.1102137 CrossRefPubMedGoogle Scholar
  57. Wunderlich F, Dkhil MA, Mehnert LI, Braun JV, El-Khadragy M, Borsch E, Hermsen D, Benten WP, Pfeffer K, Mossmann H, Krücken J (2005) Testosterone responsiveness of spleen and liver in female lymphotoxin beta receptor-deficient mice resistant to blood-stage malaria. Microbes Infect 7(3):399–409.  https://doi.org/10.1016/j.micinf.2004.11.016 CrossRefPubMedGoogle Scholar
  58. Wunderlich F, Helwig M, Schillinger G, Speth V (1988) Cryptic disposition of antigenic parasite proteins in plasma membranes of erythrocytes infected with Plasmodium chabaudi. Mol Biochem Parasitol 30(1):55–65.  https://doi.org/10.1016/0166-6851(88)90132-6 CrossRefPubMedGoogle Scholar
  59. Wunderlich F, Helwig M, Schillinger G, Speth V, Wiser MF (1988) Expression of the parasite protein Pc90 in plasma membranes of erythrocytes infected with Plasmodium chabaudi. Eur J Cell Biol 47:157–164PubMedGoogle Scholar
  60. Wunderlich F, Helwig M, Schillinger G, Vial H, Philippot J, Speth V (1987) Isolation and characterization of parasites and host cell ghosts from erythrocytes infected with Plasmodium chabaudi. Mol Biochem Parasitol 23(2):103–115.  https://doi.org/10.1016/0166-6851(87)90145-9 CrossRefPubMedGoogle Scholar
  61. Wunderlich F, Schillinger G, Helwig M (1985) Fractionation of Plasmodium chabaudi-infected erythrocytes into parasites and ghosts. Z Parasitenkd 71:545–551CrossRefPubMedGoogle Scholar
  62. Wunderlich F, Stuebig H, Koenigk E (1982) Development of Plasmodium chabaudi in mouse red blood cells: structural properties of the host and parasite membranes. J Protozool 29:60–66CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Saleh Al-Quraishy
    • 1
  • Mohamed A. Dkhil
    • 1
    • 2
  • Abdel Azeem S. Abdel-Baki
    • 1
    • 3
  • Denis Delic
    • 4
  • Frank Wunderlich
    • 5
  1. 1.Department of Zoology, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Zoology and Entomology, Faculty of ScienceHelwan UniversityCairoEgypt
  3. 3.Department of Zoology, Faculty of ScienceBeni-Suef UniversityBeni-SuefEgypt
  4. 4.Boehringer-Ingelheim PharmaBiberachGermany
  5. 5.Department of BiologyHeinrich-Heine-UniversityDuesseldorfGermany

Personalised recommendations