Parasitology Research

, Volume 117, Issue 4, pp 1087–1093 | Cite as

Morphological features and molecular phylogeny of Hoferellus azevedoi n. sp. (Myxozoa: Myxobilatidae) found in Chaetobranchus flavescens Heckel, 1840 (Teleostei: Cichlidae) from Marajó Island, northern Brazil

  • Patricia Santos Matos
  • Diehgo Tuloza da Silva
  • Igor Hamoy
  • Edilson Matos
Original Paper


Hoferellus azevedoi n. sp. was found in the urinary bladder of Chaetobranchus flavescens Heckel, 1840 from the Arari River on Marajó Island in Pará, Brazil. This is the first record of a species of the genus Hoferellus in a host from the Brazilian Amazon region. The new species has disporous and polysporous plasmodia, which vary in size and shape, with some being found adhered to the epithelium of the urinary bladder, and others floating in the liquid. The mature spores are sub-spherical in the sutural view, with a number of peripheral projections around the whole surface of the spore. In the sutural view, the spores are 5.3 ± 0.2 (5.2–5.6) μm in length and 7.0 ± 0.7 (6.3–7.7) μm in width, with two piriform polar capsules of equal size, 2.5 ± 0.2 (2.3–2.8) μm long and 1.8 ± 0.2 (1.6–2.0) μm wide. Based on a partial (1312 bps) sequence of the SSU rDNA gene, Hoferellus azevedoi n. sp. was distinguished from all the other myxozoan species deposited in GenBank. Phylogenetically, based on Bayesian inference and p-distances, the new species was allocated to the “Freshwater Urinary-Bladder” clade, together with other myxozoan parasites of the excretory system. Based on the morphological data, supported by the partial sequence of the SSU rDNA gene, we describe a new species of myxozoan, Hoferellus azevedoi n. sp.


Amazon basin Freshwater fish, 18S rDNA Microparasites 



This work was financially supported by Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (PVE - Programa Pesquisador Visitante Especial 88887.125002/2-14-00); Conselho Nacional de Desenvolvimento Científico e Tecnológico (Produtividade em Pesquisa, N° 300949/2012-0); Conselho Nacional de Desenvolvimento Científico e Tecnológico (UNIVERSAL, N° 441645/2014-3); FUNDAÇÃO AMAZÔNIA DE AMPARO A ESTUDOS E PESQUISAS (EDITAL, 006/2014, ICAAF 162/2014). We woud like to thank you for MSc. Douglas Aviz for identifying the species of fish.


  1. Abell R, Thieme ML, Revenga C, Bryer M, Kottelat M, Bogutskaya N, Coad B, Mandrak N, Balderas SC, Bussing W, Stiassny MLJ, Skelton P, Allen GR, Unmack P, Naseka A, Ng R, Sindorf N, Robertson J, Armijo E, Higgins JV, Heibel TJ, Wikramanayake E, Olson D, López HL, Reis RE, Lundberg JG, Sabaj Pérez MH, Petry P (2008) Freshwater ecoregions of the world: a new map of biogeographic units for freshwater biodiversity conservation. Bioscience 58(5):403–414. CrossRefGoogle Scholar
  2. Aguiar JC, Adriano ED, Mathews PD (2017) Morphology and molecular phylogeny of a new Myxidium species (Cnidaria: Myxosporea) infecting the farmed turtle Podocnemis expansa (Testudines: Podocnemididae) in the Brazilian Amazon. Parasitol Int 66(1):825–830. CrossRefPubMedGoogle Scholar
  3. Alama-Bermejo G, Jirkůl M, Kodádkovál A, Peckovál H, Fiala I, Holzer AS (2016) Species complexes and phylogenetic lineages of Hoferellus (Myxozoa, Cnidaria) including revision of the genus: a problematic case for taxonomy. Parasit Vectors 9(1):13. CrossRefPubMedPubMedCentralGoogle Scholar
  4. Azevedo C, Corral L, Matos M (2002) Myxobolus desaequalis n. sp. (Myxozoa, Myxosporea), parasite of the Amazonian freshwater fish, Apteronotus albifrons (Teleostei, Apteronotidae). J Eukaryot Microbiol 49:485–488. CrossRefPubMedGoogle Scholar
  5. Azevedo C, Casal G, Garcia P, Matos P, TelesGrilo L, Matos E (2009) Ultrastructural and phylogenetic data of Chloromyxum riorajum sp. nov. (Myxozoa), a parasite of the stingray Rioraja agassizii in southern Brazil. Dis Aquat Org 85(1):41–51. CrossRefPubMedGoogle Scholar
  6. Barta JR, Marin DS, Liberator PA, Dashkevicz M et al (1997) Phylogenetic relationships among eight Eimeria species infecting domestic fowl inferred using complete small subunit ribosomal DNA sequences. J Parasitol 83(2):262–271. CrossRefPubMedGoogle Scholar
  7. Bartholomew JL, Atkinson SD, Hallett SL, Lowenstine LJ, Garner MM, Gardiner CH, Rideout BA, Keel MK, Brown JD (2008) Myxozoan parasitism in waterfowl. Int J Parasitol 38(10):1199–1207. CrossRefPubMedGoogle Scholar
  8. Bartošová P, Freeman MA, Yokoyama H, Caffara M, Fiala I (2011) Phylogenetic position of Sphaerospora testicularis and Latyspora scomberomori n. Gen. n. Sp. (Myxozoa) within the marine urinary clade. Parasitology 138(03):381–393. CrossRefPubMedGoogle Scholar
  9. Baska F, Voronin VN, Eszterbauer E, Müller L, Marton S, Molnár K (2009) Occurrence of two myxosporean species, Myxobolus hakyi sp. n. And Hoferellus pulvinatus sp. n., in Pangasianodon Hypophthalmus fry imported from Thailand to Europe as ornamental fish. Parasitol Res 105(5):1391–1398. CrossRefPubMedGoogle Scholar
  10. Casal G, Matos E, Azevedo C (1996) Ultrastructural data on the life cycle stages of Myxobolus braziliensis n. sp. parasite of an Amazonian fish. Europ J Protistol 32(1):123–127. CrossRefGoogle Scholar
  11. Chang EA, Neuhof M, Rubinsteind ND, Diamante A, Philippe H, Huchon D, Cartwrighta P (2015) Genomic insights into the evolutionary origin of Myxozoa within Cnidaria. Proc Natl Acad Sci U S A 112:14912–14917. CrossRefPubMedPubMedCentralGoogle Scholar
  12. Fiala I, Bartošová P (2010) History of myxozoan character evolution on the basis of rDNA and EF-2 data. BMC Evol Biol 10(1):228. CrossRefPubMedPubMedCentralGoogle Scholar
  13. Fiala I, Bartošová-Sojková P, Whipps CM (2015) Classification and Phylogenetics of Myxozoa. In: Okamura B, Gruhl A, Bartholomew JL (eds) Myxozoan Evolution. Ecology and Development. Springer International Publishing, Cham, pp 85–110. CrossRefGoogle Scholar
  14. Guindon S, Gascuel O (2003) A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52(5):696–704. CrossRefPubMedGoogle Scholar
  15. Hall TA (1999) BioEdit: a user–friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucl acids Symp. Ser 41:95–98Google Scholar
  16. Jimenez-Guri E, Philippe H, Okamura B, Holland PWH (2007) Buddenbrockia is a cnidarian worm. Science 317(5834):116–118. CrossRefPubMedGoogle Scholar
  17. Junk WJ, Soares MGM, Bayley PB (2007) Freshwater fishes of the Amazon River basin: their biodiversity, fisheries, and habitats. Aquatic Ecosystem Health & Management 10(2):153–173. CrossRefGoogle Scholar
  18. Kent ML, Andree KB, Bartholomew JL et al (2001) Recent advances in our knowledge of the Myxozoa. J Eukaryot Microbiol 48(4):395–413. CrossRefPubMedGoogle Scholar
  19. Lom J, Arthur JR (1989) A guideline for the preparation of species descriptions in Myxosporea. J Fish Dis 12(2):151–156. CrossRefGoogle Scholar
  20. Lom J, Dyková I (2006) Myxozoan genera: definition and notes on taxonomy, life-cycle terminology and pathogenic species. Folia Parasitol 53(1):1–36. CrossRefPubMedGoogle Scholar
  21. Lom J, Molnár K, Dyková I (1986) Hoferellus gilsoni (Debaisieux, 1925) comb. n. (Myxozoa, Myxosporea): Redescription and mode of attachment to the epithelium of urinary bladder of its host, the European ell. Parasitologica 4:405–413Google Scholar
  22. Luna LG (1968) Manual of histologic staining methods of the armed forces institute of pathology. McGraw-Hill, New YorkGoogle Scholar
  23. Mathews PD, Maia AAM, Adriano EA (2016) Henneguya melini n. Sp. (Myxosporea: Myxobolidae), a parasite of Corydoras melini (Teleostei: Siluriformes) in the Amazon region: morphological and ultrastructural aspects. Parasitol Res 115(9):3599–3604. CrossRefPubMedGoogle Scholar
  24. Matos E, Tajdari J, Azevedo C (2005) Ultrastructural studies of Henneguya rhamdia n. Sp. (Myxozoa) a parasite from the Amazon teleost fish, Rhamdia quelen (Pimelodidae). J Eukaryot Microbiol 52:532–537. CrossRefPubMedGoogle Scholar
  25. McGrath DG, Castello L, Almeida OT, Estupiñán GMB (2015) Market formalization, governance, and the integration of community fisheries in the Brazilian Amazon. Soc Nat Resour 28(5):513–529. CrossRefGoogle Scholar
  26. Molnár K, Eszterbauer E, Szckely C, Dán Á, Harrach B (2002) Morphological and molecular biological studies on intramuscular Myxobolus spp. of cyprinid fish. J Fish Dis 25:643–652. CrossRefGoogle Scholar
  27. Moshu AJ, Trombitsky ID (2006) New parasites (Apicomplexa, Cnidospora) of some Clupeidae fishes from the Danube and Dniester basins. Acad Leo Berg–Collection Sci Articles 130:95–103Google Scholar
  28. Mutschmann F (2004) Pathological changes in African hyperoliid frogs due to a myxosporidian infection with a new species of Hoferellus (Myxozoa). Dis Aquat Org 60(3):215–222. CrossRefPubMedGoogle Scholar
  29. Page RDM (1996) TREEVIEW: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12(4):357–358PubMedGoogle Scholar
  30. Posada D (2008) jModelTest: phylogenetic model averaging. Mol Biol Evol 25:1253–1256. CrossRefPubMedGoogle Scholar
  31. Prunescu CC, Prunesco P, Pucek Z, Lom J (2007) The first finding of myxosporean development from plasmodia to spores in terrestrial mammals: Soricimyxum fegati, gen. et sp. n. (Myxozoa) from Sorex araneus (Soricomorpha). Folia Parasitol 54(3):159–164. CrossRefPubMedGoogle Scholar
  32. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19(12):1572–1574. CrossRefPubMedGoogle Scholar
  33. Swofford DL (2003) PAUP*. Phylogenetic analysis using parsimony (*and other methods), v. 4.0 beta 10. Sinauer associates, SunderlandGoogle Scholar
  34. Thompson JD, Gibson TJ, Plewniak F, Jeanmougin F, Higgins DG (1997) The CLUSTAL–X window interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucl Acids Res 25(24):4876–4882. CrossRefPubMedPubMedCentralGoogle Scholar
  35. Velasco M, Videira M, Nascimento LCS, Matos P, Gonçalves EC, Matos E (2016) Henneguya paraensis n. sp. (Myxozoa; Myxosporea), a new gill parasite of the Amazonian fish Cichla temensis (Teleostei: Cichlidae): morphological and molecular aspects. Parasitol Res 115(5):1779–1787. CrossRefPubMedGoogle Scholar
  36. Wünnemann H, Holzer AS, Pecková H, Bartošová-Sojková P, Eskens U, Lierz M (2016) Repatriation of an old fish host as an opportunity for myxozoan parasite diversity: the example of the allis shad, Alosa alosa (Clupeidae), in the Rhine. Parasit Vectors 9(1):505. CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Patricia Santos Matos
    • 1
  • Diehgo Tuloza da Silva
    • 1
  • Igor Hamoy
    • 2
  • Edilson Matos
    • 1
    • 3
  1. 1.Postgraduate Programme in the Biology of Infectious and Parasitic Agents (BAIP)Federal University of Pará (UFPa)Belém, ParáBrazil
  2. 2.Laboratory of Applied GeneticsFederal Rural University of Amazonia (UFRA)BelémBrazil
  3. 3.Carlos Azevedo Research LaboratoryFederal Rural University of the Amazon (UFRA)BelémBrazil

Personalised recommendations