Parasitology Research

, Volume 117, Issue 4, pp 1035–1041 | Cite as

In silico analysis of the EF-hand proteins in the genome of Giardia intestinalis assembly A

  • Magda E. Alvarado
  • Claudia Rubiano
  • Diana Velandia
  • Moisés Wasserman
Original Paper
  • 83 Downloads

Abstract

Giardia intestinalis is a parasite that inhabits the small intestine of humans and other mammals, causing a disease that can manifest itself with acute diarrhea. This parasite is an early divergent eukaryote with a compact genome and a life cycle composed of two distinct cell types: the trophozoite, the replicative form, and the cyst, the infectious form. Signal transduction pathways implicated in differentiation processes of G. intestinalis are largely unknown. Calcium, considered an essential messenger in cell signaling, has been shown to regulate a myriad of key cell processes including metabolism, motility, and exocytosis, among other important functions, through calcium-binding proteins (CaBPs). The most important and largest family of CaBPs is the EF-hand protein family. To investigate the nature of calcium signaling pathways present in this protozoan, an in silico analysis of the genome to identify genes encoding EF-hand proteins was undertaken. Twenty-eight sequences containing EF-hand domains were found; most of which have only a pair of domains, and half of the sequences were divergent or unique to Giardia. In addition, the transcription pattern for eight genes encoding EF-hand proteins was assessed during encystation. It was found that all the genes were differentially transcribed suggesting a different function in this process. The in silico results suggest that in G. intestinalis, calcium is involved in the regulation of protein phosphorylation through kinases and phosphatases.

Keywords

Giardia intestinalis EF-hand Calcium Calcium-binding protein Encystation 

References

  1. Abel ES, Davids BJ, Robles LD, Loflin CE, Gillin FD, Chakrabarti R (2001) Possible roles of protein kinase A in cell motility and excystation of the early diverging eukaryote Giardia lamblia. J Biol Chem 276(13):10320–10329.  https://doi.org/10.1074/jbc.M006589200 CrossRefPubMedGoogle Scholar
  2. Adam RD (2001) Biology of Giardia lamblia. Clin Microbiol Rev 14(3):447–475.  https://doi.org/10.1128/CMR.14.3.447-475.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Alvarado ME, Wasserman M (2012) Calmodulin expression during Giardia intestinalis differentiation and identification of calmodulin-binding proteins during the trophozoite stage. Parasitol Res 110(4):1371–1380.  https://doi.org/10.1007/s00436-011-2637-4 CrossRefPubMedGoogle Scholar
  4. Alvarado ME, Rubiano C, Calvo E, Gómez V, Wasserman M (2017) Experimental and bioinformatic characterization of CaBP2933 an EF-hand protein of Giardia intestinalis. Mol Biochem Parasitol 214:65–68.  https://doi.org/10.1016/j.molbiopara.2017.03.010 CrossRefPubMedGoogle Scholar
  5. Araya JE, Cornejo A, Orrego PR, Cordero EM, Cortéz M, Olivares H, Neira I, Sagua H, Franco da Silveira J, Yoshida N, González J (2008) Calcineurin B of the human protozoan parasite Trypanosoma cruzi is involved in cell invasion. Microbes Infect 10(8):892–900.  https://doi.org/10.1016/j.micinf.2008.05.003 CrossRefPubMedGoogle Scholar
  6. Aurrecoechea C, Brestelli J, Brunk BP, Carlton JM, Dommer J, Fischer S, Gajria B, Gao X, Gingle A, Grant G, Harb OS, Heiges M, Innamorato F, Iodice J, Kissinger JC, Kraemer E, Li W, Miller JA, Morrison HG, Nayak V, Pennington C, Pinney DF, Roos DS, Ross C, Stoeckert CJ, Sullivan S, Treatman C, Wang H (2009) GiardiaDB and TrichDB: integrated genomic resources for the eukaryotic protist pathogens Giardia lamblia and Trichomonas vaginalis. Nucleic Acids Res 37(Database issue):D526–D530.  https://doi.org/10.1093/nar/gkn631 CrossRefPubMedGoogle Scholar
  7. Banky P, Huang LJ, Taylor SS (1998) Dimerization/docking domain of the type I alpha regulatory subunit of cAMP-dependent protein kinase. Requirements for dimerization and docking are distinct but overlapping. J Biol Chem 273(52):35048–35055.  https://doi.org/10.1074/jbc.273.52.35048 CrossRefPubMedGoogle Scholar
  8. Best AA, Morrison HG, McArthur AG, Sogin ML, Olsen GJ (2004) Evolution of eukaryotic transcription: insights from the genome of Giardia lamblia. Genome Res 14(8):1537–1547.  https://doi.org/10.1101/gr.2256604 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Brini M, Calì T, Ottolini D, Carafoli E (2014) Neuronal calcium signaling: function and dysfunction. Cell Mol Life Sci 71(15):2787–2814.  https://doi.org/10.1007/s00018-013-1550-7 CrossRefPubMedGoogle Scholar
  10. Carranza PG, Lujan HD (2010) New insights regarding the biology of Giardia lamblia. Microbes Infect 12(1):71–80.  https://doi.org/10.1016/j.micinf.2009.09.008 CrossRefPubMedGoogle Scholar
  11. Corbalan-Garcia S, Gómez-Fernández JC (2014) Signaling through C2 domains: more than one lipid target. Biochim Biophys Acta 1838(6):1536–1547.  https://doi.org/10.1016/j.bbamem.2014.01.008 CrossRefPubMedGoogle Scholar
  12. Corrêa G, Morgado-Diaz JA, Benchimol M (2004) Centrin in Giardia lamblia—ultrastructural localization. FEMS Microbiol Lett 233(1):91–96.  https://doi.org/10.1016/j.femsle.2004.01.043 CrossRefPubMedGoogle Scholar
  13. Denessiouk K, Permyakov S, Denesyuk A, Permyakov E, Johnson MS (2014) Two structural motifs within canonical EF-hand calcium-binding domains identify five different classes of calcium buffers and sensors. PLoS One 9(10):e109287.  https://doi.org/10.1371/journal.pone.0109287 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Elmendorf HG, Dawson SC, McCaffery JM (2003) The cytoskeleton of Giardia lamblia. Int J Parasitol 33(1):3–28.  https://doi.org/10.1016/S0020-7519(02)00228-X CrossRefPubMedGoogle Scholar
  15. Gallego E, Alvarado M, Wasserman M (2007) Identification and expression of the protein ubiquitination system in Giardia intestinalis. Parasitol Res 101(1):1–7.  https://doi.org/10.1007/s00436-007-0458-2 CrossRefPubMedGoogle Scholar
  16. Gifford JL, Walsh MP, Vogel HJ (2007) Structures and metal-ion-binding properties of the Ca2+-binding helix-loop-helix EF-hand motifs. Biochem J 405(2):199–221.  https://doi.org/10.1042/BJ20070255 CrossRefPubMedGoogle Scholar
  17. Holder AA, Mohd Ridzuan MA, Green JL (2012) Calcium dependent protein kinase 1 and calcium fluxes in the malaria parasite. Microbes Infect 14(10):825–830.  https://doi.org/10.1016/j.micinf.2012.04.006 CrossRefPubMedGoogle Scholar
  18. Ikura M (1996) Calcium binding and conformational response in EF-hand proteins. Trends Biochem Sci 21(1):14–17.  https://doi.org/10.1016/S0968-0004(06)80021-6 CrossRefPubMedGoogle Scholar
  19. Kane AV, Ward HD, Keusch GT, Pereira ME (1991) In vitro encystation of Giardia lamblia: large-scale production of in vitro cysts and strain and clone differences in encystation efficiency. J Parasitol 77(6):974–981.  https://doi.org/10.2307/3282752 CrossRefPubMedGoogle Scholar
  20. Keister DB (1983) Axenic culture of Giardia lamblia in TYI-S-33 medium supplemented with bile. Trans R Soc Trop Med Hyg 77(4):487–488.  https://doi.org/10.1016/0035-9203(83)90120-7 CrossRefPubMedGoogle Scholar
  21. Kumar P, Tripathi A, Ranjan R, Halbert J, Gilberger T, Doerig C, Sharma P (2014) Regulation of Plasmodium falciparum development by calcium-dependent protein kinase 7 (PfCDPK7). J Biol Chem 289(29):20386–20395.  https://doi.org/10.1074/jbc.M114.561670 CrossRefPubMedPubMedCentralGoogle Scholar
  22. Lassmann T, Sonnhammer EL (2005) Kalign—an accurate and fast multiple sequence alignment algorithm. BMC Bioinformatics 6(1):298.  https://doi.org/10.1186/1471-2105-6-298 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Lauwaet T, Smith AJ, Reiner DS, Romijn EP, Wong CC, Davids BJ et al (2011) Mining the Giardia genome and proteome for conserved and unique basal body proteins. Int J Parasitol 41(10):1079–1092.  https://doi.org/10.1016/j.ijpara.2011.06.001 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Lewit-Bentley A, Réty S (2000) EF-hand calcium-binding proteins. Curr Opin Struct Biol 10(6):637–643.  https://doi.org/10.1016/S0959-440X(00)00142-1 CrossRefPubMedGoogle Scholar
  25. Maki M, Kitaura Y, Satoh H, Ohkouchi S, Shibata H (2002) Structures, functions and molecular evolution of the penta-EF-hand Ca2+-binding proteins. Biochim Biophys Acta 1600(1-2):51–60.  https://doi.org/10.1016/S1570-9639(02)00444-2 CrossRefPubMedGoogle Scholar
  26. Meng TC, Aley SB, Svard SG, Smith MW, Huang B, Kim J, Gillin FD (1996) Immunolocalization and sequence of caltractin/centrin from the early branching eukaryote Giardia lamblia. Mol Biochem Parasitol 79(1):103–108.  https://doi.org/10.1016/0166-6851(96)02636-9 CrossRefPubMedGoogle Scholar
  27. Mitchell A, Chang H-Yu, Daugherty L, Fraser M, Hunter S, Lopez R, McAnulla C, McMenamin C, Nuka G, Pesseat S, Sangrador-Vegas A, Scheremetjew M, Rato C, Yong SY, Bateman A, Punta M, Attwood TK, Sigrist CJA, Redaschi N, Rivoire C, Xenarios I, Kahn D, Guyot D, Bork P, Letunic I, Gough J, Oates M, Haft D, Huang H, Natale da, Wu CH, Orengo C, Sillitoe I, Mi H, Thomas PD, Finn RD The InterPro protein families database: the classification resource after 15 years. Nucl Acid Res 2015; 43: Database issue D213–D221, DOI:  https://doi.org/10.1093/nar/gku1243
  28. Morrison HG, McArthur AG, Gillin FD, Aley SB, Adam RD, Olsen GJ, Best AA, Cande WZ, Chen F, Cipriano MJ, Davids BJ, Dawson SC, Elmendorf HG, Hehl AB, Holder ME, Huse SM, Kim UU, Lasek-Nesselquist E, Manning G, Nigam A, Nixon JEJ, Palm D, Passamaneck NE, Prabhu A, Reich CI, Reiner DS, Samuelson J, Svard SG, Sogin ML (2007) Genomic minimalism in the early diverging intestinal parasite Giardia lamblia. Science 317(5846):1921–1926.  https://doi.org/10.1126/science.1143837 CrossRefPubMedGoogle Scholar
  29. Moss SE, Morgan RO (2004) The annexins. Genome Biol 5(4):219.  https://doi.org/10.1186/gb-2004-5-4-219 CrossRefPubMedPubMedCentralGoogle Scholar
  30. Mowatt MR, Luján HD, Cotten DB, Bowers B, Yee J, Nash TE, Stibbs HH (1995) Developmentally regulated expression of a Giardia lamblia cyst wall protein gene. Mol Microbiol 15(5):955–963.  https://doi.org/10.1111/j.1365-2958.1995.tb02364.x CrossRefPubMedGoogle Scholar
  31. Newlon MG, Roy M, Hausken ZE, Scott JD, Jennings PA (1997) The A-kinase anchoring domain of type II alpha cAMP-dependent protein kinase is highly helical. J Biol Chem 272(38):23637–23644.  https://doi.org/10.1074/jbc.272.38.23637 CrossRefPubMedGoogle Scholar
  32. Pires SM, Fischer-Walker CL, Lanata CF, Devleesschauwer B, Hall AJ, Kirk MD, Duarte ASR, Black RE, Angulo FJ (2015) Aetiology-specific estimates of the global and regional incidence and mortality of diarrhoeal diseases commonly transmitted through food. PLoS One 10(12):e0142927.  https://doi.org/10.1371/journal.pone.0142927 CrossRefPubMedPubMedCentralGoogle Scholar
  33. Reiner DS, Hetsko ML, Meszaros JG, Sun CH, Morrison HG, Brunton LL, Gillin FD (2003) Calcium signaling in excystation of the early diverging eukaryote, Giardia lamblia. J Biol Chem 278(4):2533–2540.  https://doi.org/10.1074/jbc.M208033200 CrossRefPubMedGoogle Scholar
  34. Rusnak F, Mertz P (2000) Calcineurin: form and function. Physiol Rev 80(4):1483–1521.  https://doi.org/10.1152/physrev.2000.80.4.1483 CrossRefPubMedGoogle Scholar
  35. Svärd SG, Hagblom P, Palm JE (2003) Giardia lamblia a model organism for eukaryotic cell differentiation. FEMS Microbiol Lett 218(1):3–7PubMedGoogle Scholar
  36. Tovar J, León-Avila G, Sánchez LB, Sutak R, Tachezy J, van der Giezen M, Hernández M, Müller M, Lucocq JM (2003) Mitochondrial remnant organelles of Giardia function in iron-sulphur protein maturation. Nature 426(6963):172–176.  https://doi.org/10.1038/nature01945 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Laboratorio de Investigaciones Básicas en Bioquímica—LIBBIQ, Facultad de CienciasUniversidad Nacional de ColombiaBogotáColombia

Personalised recommendations