Parasitology Research

, Volume 117, Issue 4, pp 1025–1033 | Cite as

Parasites of skipjack, Katsuwonus pelamis, from Madeira, Eastern Atlantic

  • Margarida Hermida
  • Bárbara Cavaleiro
  • Lídia Gouveia
  • Aurélia Saraiva
Original Paper

Abstract

Skipjack tuna, Katsuwonus pelamis, is a tropical species of economic importance for fisheries around the world. It occurs seasonally in subtropical waters around Madeira archipelago, in the warmer months. In this study, a parasitological analysis was carried out on a sample of 30 skipjack caught near Madeira Island. A total of 24 parasite taxa were found in this sample. The skipjack parasite community detected was characterized by a wide diversity of parasites, with a predominance of adult didymozoid trematodes, and high prevalences of Tentacularia coryphaenae cestode larvae and Anisakis sp. larvae. Microhabitat distribution of gill parasites was assessed for the most prevalent species, and correlations between parasite abundance and various host features such as size, condition, and fat content were investigated. Parasite taxa which might be useful as biological tags in future studies of skipjack migrations in the Eastern Atlantic were selected.

Keywords

Atlantic Katsuwonus pelamis Madeira Parasites Portugal Skipjack Tuna 

Notes

Funding information

Margarida Hermida was financially supported by a post-doctoral grant form ARDITI (Regional Agency for Development of Research, Technology and Innovation of Madeira), Project M1420-09-5369-FSE-000001. Bárbara Cavaleiro was financially supported by a research grant within the project OceanWebs (PTDC/MAR-PRO/0929/2014). This study was partially supported by the Oceanic Observatory of Madeira Project (M1420-01-0145-FEDER-000001-Observatório Oceânico da Madeira-OOM).

References

  1. Alves DR, Luque JL (2006) Ecologia das comunidades de metazoários parasitos de cinco espécies de escombrídeos (Perciformes: Scombridae) do litoral do estado do Rio de Janeiro, Brasil. Rev Bras Parasitol Vet 15(4):167–181PubMedGoogle Scholar
  2. Braicovich PE, Ieno EN, Sáez M, Despos J, Timi JT (2016) Assessing the role of host traits as drivers of the abundance of long-lived parasites in fish-stock assessment studies. J Fish Biol 89(5):2419–2433.  https://doi.org/10.1111/jfb.13127 CrossRefPubMedGoogle Scholar
  3. Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83(4):575–583.  https://doi.org/10.2307/3284227 CrossRefPubMedGoogle Scholar
  4. Cissé M, Bédé O, Gourène G, Ouattara A, Gnayoro M (2007) Helminth and copepod parasites of skipjack tuna Katsuwonus pelamis (Pisces, Scombridae) disembarked at the harbour of Abidjan (Atlantic coast of Ivory Coast). Proc 7th Int Symp fish parasites. Parassitologia 49(Suppl. 2):243Google Scholar
  5. Collette BB, Nauen CE (1983) FAO species catalogue, volume 2. Scombrids of the world. An annotated and illustrated catalogue of tunas, mackerels, bonitos and related species known to date. FAO fisheries synopses 125(2). FAO, RomeGoogle Scholar
  6. Costa G, Cavallero S, D’Amelio S, Paggi L, Santamaria MTG, Perera CB, Santos MJ, Khadem M (2011) Helminth parasites of the Atlantic chub mackerel, Scomber colias Gmelin, 1789 from Canary Islands, Central North Atlantic, with comments on their relations with other Atlantic regions. Acta Parasitol 56(1):98–104.  https://doi.org/10.2478/s11686-011-0006-1 CrossRefGoogle Scholar
  7. Costa G, Melo-Moreira E, de Carvalho MP (2012) Helminth parasites of the oceanic horse mackerel Trachurus picturatus Bowdich 1825 (Pisces: Carangidae) from Madeira Island, Atlantic Ocean, Portugal. J Helminthol 86(03):368–372.  https://doi.org/10.1017/S0022149X11000502 CrossRefPubMedGoogle Scholar
  8. Cressey RF (1991) Parasitic copepods from the Gulf of Mexico and Caribbean Sea, III: Caligus. Smithsonian Institution Press, Washington DCGoogle Scholar
  9. Crites JL, Overstreet RM, Maung M (1993) Ctenascarophis lesteri n. sp. and Prospinitectus exiguus n. sp.(Nematoda: Cystidicolidae) from the skipjack tuna, Katsuwonus pelamis. J Parasitol 79(6):847–859.  https://doi.org/10.2307/3283721 CrossRefPubMedGoogle Scholar
  10. Culurgioni J, Mele S, Merella P, Addis P, Figus V, Cau A, Karakulak FS, Garippa G (2014) Metazoan gill parasites of the Atlantic bluefin tuna Thunnus thynnus (Linnaeus) (Osteichthyes: Scombridae) from the Mediterranean and their possible use as biological tags. Folia Parasit 61:148–156.  https://doi.org/10.14411/fp.2014.011 Google Scholar
  11. Freitas L, Dinis A, Nicolau C, Ribeiro C, Alves F (2012) New records of cetacean species for Madeira archipelago with an updated checklist. Boletim to Museu Municipal do Funchal 62:25–43Google Scholar
  12. Galaktionov KV, Dobrovolskij A (2013) The biology and evolution of trematodes: an essay on the biology, morphology, life cycles, transmissions, and evolution of digenetic trematodes. Springer Science & Business MediaGoogle Scholar
  13. Gallo-Reynoso JP, Figueroa-Carranza AL (1998) Cetaceans of Isla de Guadalupe, Baja California, Mexico. Bull Southern California Acad Sci 97:33–38Google Scholar
  14. Golvan YJ (1969) Systématique des Acanthocéphales (Acanthocephala Rudolphi 1801).: L’ordre des Palæacanthocephala Meyer 1931. la super-famille des Echinorhynchoidea (Cobbold 1876) Golvan et Houin 1963. Éditions du Muséum, ParisGoogle Scholar
  15. Gibson D, Jones JB (1993) Fed up with parasites? A method for estimating asymptotic growth in fish populations. Mar Biol 117:495–500Google Scholar
  16. Gurr MI (1983) The role of lipids in the regulation of the immune system. Prog Lipid Res 22(4):257–287.  https://doi.org/10.1016/0163-7827(83)90007-3 CrossRefPubMedGoogle Scholar
  17. Hermida M, Cruz C, Saraiva A (2014) Gastrointestinal helminth communities of the blackspot seabream Pagellus bogaraveo (Teleostei: Sparidae) from Portuguese north-east Atlantic waters. J Helminthol 88(02):129–138.  https://doi.org/10.1017/S0022149X1200079X CrossRefPubMedGoogle Scholar
  18. Hunsicker ME, Olson RJ, Essington TE, Maunder MN, Duffy LM, Kitchell JF (2012) Potential for top-down control on tropical tunas based on size structure of predator–prey interactions. Mar Ecol Prog Ser 445:263–277.  https://doi.org/10.3354/meps09494 CrossRefGoogle Scholar
  19. Jones JB (1991) Movements of albacore tuna (Thunnus alalunga) in the South Pacific: evidence from parasites. Mar Biol 111(1):1–9.  https://doi.org/10.1007/BF01986338 CrossRefGoogle Scholar
  20. Justo MCN, Kohn A (2005) Didymozoidae (Digenea) parasites of Scombridae (Actinopterygii) from Rio de Janeiro coast, Brazil. Revista Brasileira de Zoociências 7:333–338Google Scholar
  21. Justo MCN, Kohn A, Pereira CDS, Flores-Lopes F (2013) Histopathology and autoecology of Didymocylindrus simplex (Digenea: Didymozoidae), parasite of Katsuwonus pelamis (Scombridae) in the Southwestern Atlantic Ocean, off South America. Zoologia-Curitiba 30(3):312–316.  https://doi.org/10.1590/S1984-46702013000300008 CrossRefGoogle Scholar
  22. Kohn A, Justo MCN (2006) Caballerocotyla llewelyni n. sp. and Caballerocotyla neothunni (Yamaguti, 1968) (Monogenea; Capsalidae) parasites of Brazilian tunas (Scombridae). Zootaxa 1139:19–26Google Scholar
  23. Kuhn T, Hailer F, Palm HW, Klimpel S (2013) Global assessment of molecularly identified Anisakis Dujardin, 1845 (Nematoda: Anisakidae) in their teleost intermediate hosts. Folia Parasit 60(2):123–134.  https://doi.org/10.14411/fp.2013.013 CrossRefGoogle Scholar
  24. Lester RJG, Barnes A, Habib G (1985) Parasites of skipjack tuna, Katsuwonus pelamis: fishery implications. Fish B-NOAA 83:343–356Google Scholar
  25. Levsen A, Svanevik CS, Cipriani P, Mattiucci S, Gay M, Hastie LC, Bušelić I, Mladineo I, Karl H, Ostermeyer U, Buchmann K (2017) A survey of zoonotic nematodes of commercial key fish species from major European fishing grounds—introducing the FP7 PARASITE exposure assessment study. Fish Res (in press)Google Scholar
  26. Lloret J, Shulman G, Love RM (2014) Condition and health indicators of exploited marine fishes. John Wiley & Sons, West Sussex, UKGoogle Scholar
  27. MacKenzie K, Abaunza P (1998) Parasites as biological tags for stock discrimination of marine fish: a guide to procedures and methods. Fish Res 38(1):45–56.  https://doi.org/10.1016/S0165-7836(98)00116-7 CrossRefGoogle Scholar
  28. MacKenzie K, Abaunza P (2014) Parasites as biological tags. In: Cadrin SX, Kerr LA, Mariani S (eds) Stock identification methods: applications in fishery science, 2nd edn. Academic Press, Elsevier, New York, pp 185–203.  https://doi.org/10.1016/B978-0-12-397003-9.00010-2 CrossRefGoogle Scholar
  29. Mattiucci S, Nascetti G (2008) Advances and trends in the molecular systematics of anisakid nematodes, with implications for their evolutionary ecology and host–parasite co-evolutionary processes. Adv Parasitol 66:47–148.  https://doi.org/10.1016/S0065-308X(08)00202-9 CrossRefPubMedGoogle Scholar
  30. Mattiucci S, Cipriani P, Paoletti M, Levsen A, Nascetti G (2017) Reviewing biodiversity and epidemiological aspects of anisakid nematodes from the North-east Atlantic Ocean. J Helminthol 91(04):422–439.  https://doi.org/10.1017/S0022149X1700027X CrossRefPubMedGoogle Scholar
  31. Mele S, Macías D, Gómez-Vives MJ, Garippa G, Alemany F, Merella P (2012) Metazoan parasites on the gills of the skipjack tuna Katsuwonus pelamis (Osteichthyes: Scombridae) from the Alboran Sea (western Mediterranean Sea). Dis Aquat Org 97(3):219–225.  https://doi.org/10.3354/dao02421 CrossRefPubMedGoogle Scholar
  32. Mele S, Merella P, Macias D, Gómez MJ, Garippa G, Alemany F (2010) Metazoan gill parasites of wild albacore Thunnus alalunga (Bonaterre, 1788) from the Balearic Sea (western Mediterranean) and their use as biological tags. Fish Res 102(3):305–310.  https://doi.org/10.1016/j.fishres.2010.01.002 CrossRefGoogle Scholar
  33. Moravec F (1994) Parasitic nematodes of freshwater fishes of Europe. Academia, PragueGoogle Scholar
  34. Murugesh M (1995) Monogenetic trematodes from scombrid fishes of the Visakhapatnam coast, Bay of Bengal. J Nat Hist 29(1):1–26.  https://doi.org/10.1080/00222939500770011 CrossRefGoogle Scholar
  35. Nigmatullin CHM, Shukhgalter OA, Galaktionov KV (2016) Ecological groups of Didymozoid trematodes and the structures of their life cycles. In: Movsesyan SO (ed) Fauna and ecology of parasites, pp 79–81 [in Russian]Google Scholar
  36. Nikolaeva VM (1965) The life-cycle of trematodes of the family Didymozoidae (Monticelli, 1888) Poche, 1907. Zoologicheskii Zhurnal 44:1317–1327 [in Russian]Google Scholar
  37. Nikolaeva VM (1985) Trematodes–Didymozoidae fauna, distribution and biology. NOAA Technical Report NMFS 25:67–72Google Scholar
  38. Oliva ME, Valdivia IM, Costa G, Freitas N, Pinheiro de Carvalho MA, Sánchez L, Luque JL (2008) What can metazoan parasites reveal about the taxonomy of Scomber japonicus Houttuyn in the coast of South America and Madeira Islands? J Fish Biol 72(3):545–554.  https://doi.org/10.1111/j.1095-8649.2007.01725.x CrossRefGoogle Scholar
  39. Paling JE (1968) A method of estimating the relative volumes of water flowing over the different gills of a freshwater fish. J Exp Biol 48(3):533–544PubMedGoogle Scholar
  40. Palm HW (2004) The Trypanorhyncha Diesing, 1863. PKSPL-IPB Press, BogorGoogle Scholar
  41. Palm HW, Waeschenbach A, Littlewood DTJ (2007) Genetic diversity in the trypanorhynch cestode Tentacularia coryphaenae Bosc, 1797: evidence for a cosmopolitan distribution and low host specificity in the teleost intermediate host. Parasitol Res 101(1):153–159.  https://doi.org/10.1007/s00436-006-0435-1 CrossRefPubMedGoogle Scholar
  42. Parrilla G, Kinder TH (1987) The physical oceanography of the Alboran Sea. Reports in Meteorology and Oceanography 40:143–184Google Scholar
  43. Pozdnyakov SE, Gibson DI (2008) Family Didymozoidae Monticelli, 1888. In: Bray RA, Gibson DI, Jones A (eds) Keys to the Trematoda, volume 3. CABI and Natural History Museum, London, pp 631–734.  https://doi.org/10.1079/9780851995885.0631 CrossRefGoogle Scholar
  44. R Core Team (2016) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. URL: https://www.R-project.org/
  45. Ramos AG, Lorenzo JM, Pajuelo JG (1995) Food habits of bait-caught skipjack tuna Katsuwonus pelamis off the Canary Islands. Sci Mar 59:365–369Google Scholar
  46. Rodríguez-Marín E, Barreiro S, Montero FE, Carbonell E (2008) Looking for skin and gill parasites as biological tags for Atlantic bluefin tuna (Thunnus thynnus). Aquat Living Resour 21(4):365–371.  https://doi.org/10.1051/alr:2008054 CrossRefGoogle Scholar
  47. Santos LR (2014) Helmintos parasitas de Katsuwonus pelamis (Pisces, Scombridae) do litoral de Sergipe. Semana de Pesquisa da Universidade Tiradentes-SEMPESq 16Google Scholar
  48. Schaefer KM (2001) Reproductive biology of tunas. In Block BA, Stevens ED (eds) Tuna. Physiology, ecology, and evolution. Academic Press, San Diego, pp. 225–270.  https://doi.org/10.1016/S1546-5098(01)19007-2 CrossRefGoogle Scholar
  49. Shulman GE, Love RM (1999) The biochemical ecology of marine fishes. Adv Mar Biol 36Google Scholar
  50. Vasconcelos J, Hermida M, Saraiva A, González JA, Gordo LS (2017) The use of parasites as biological tags for stock identification of blue jack mackerel, Trachurus picturatus, in the North-eastern Atlantic. Fish Res 193:1–6.  https://doi.org/10.1016/j.fishres.2017.03.015 CrossRefGoogle Scholar
  51. Wegner NC, Sepulveda CA, Bull KB, Graham JB (2010) Gill morphometrics in relation to gas transfer and ram ventilation in high-energy demand teleosts: Scombrids and billfishes. J Morphol 271(1):36–49.  https://doi.org/10.1002/jmor.10777 CrossRefPubMedGoogle Scholar
  52. Williams HH, MacKenzie K, McCarthy AM (1992) Parasites as biological indicators of the population biology, migrations, diet, and phylogenetics of fish. Rev Fish Biol Fisher 2:144–176CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.CIIMAR-Madeira, Interdisciplinary Centre of Marine and Environmental Research of MadeiraFunchalPortugal
  2. 2.Oceanic Observatory of MadeiraFunchalPortugal
  3. 3.Faculty of Sciences, Biology DepartmentUniversity of PortoPortoPortugal
  4. 4.Research Services Directory, Regional Directorate of Fisheries of Madeira (DRP/DSI)FunchalPortugal
  5. 5.CIIMAR Interdisciplinary Center of Marine and Environmental ResearchPortoPortugal

Personalised recommendations