Advertisement

Parasitology Research

, Volume 117, Issue 4, pp 947–957 | Cite as

Adaptation of the secretome of Echinostoma caproni may contribute to parasite survival in a Th1 milieu

  • Alba Cortés
  • Carla Muñoz-Antolí
  • María Álvarez-Izquierdo
  • Javier Sotillo
  • J. Guillermo Esteban
  • Rafael Toledo
Original Paper

Abstract

Echinostoma caproni (Trematoda: Echinostomatidae) is an intestinal trematode, broadly employed to study the host-dependent mechanisms that govern the evolution of intestinal helminth infections. Resistance against E. caproni homologous secondary infections has been reported in mice and appears to be related to the generation of a local Th2 response, whereas Th1 responses promote the development of chronic primary infections. Herein, the ability of E. caproni to modulate its secretome according to the host environment is investigated. A two-dimensional differential in gel electrophoresis (2D-DIGE) analysis was performed to elucidate changes in the excretory/secretory products of E. caproni adults after primary and secondary infections in mice. A total of 16 protein spots showed significant differences between groups, and 7 of them were successfully identified by mass spectrometry. Adult worms exposed to a primary infection appear to upregulate proteins involved in detoxification (aldo-keto reductase), stress response (GroEL), and enhancement of parasite survival (acetyl-CoA A-acetyltransferase and UTP-glucose-1-phosphate urydyltransferase). In contrast, any protein was found to be significantly upregulated after secondary infection. Upregulation of such proteins may serve to withstand the hostile Th1 environment generated in primary infections in mice. These results provide new insights into the resistance mechanisms developed by the parasites to ensure their long-term survival.

Keywords

Echinostoma caproni Trematoda Secretome modulation Immune response Infection resistance 2D-DIGE 

Notes

Acknowledgements

This work was supported by Ministerio de Economía y Competitividad (Madrid, Spain) (grant number BFU2016-75639-P); Conselleria d’Educació, Generalitat Valenciana (Valencia, Spain) (grant number PROMETEO2014-083 Fase II), and from Ministerio de Sanidad y Consumo (Madrid, Spain) (No. RD12/0018/0013, Red de Investigación Cooperativa en Enfermedades Tropicales (RICET), IV National Program of I+D+I 2008-2011, ISCIII—Subdirección General de Redes y Centros de Investigación Cooperativa and FEDER).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Statement on welfare of animals

All applicable international, national, and institutional guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution at which the studies were conducted.

Statement on human rights

This article does not contain any studies with human participants performed by none of the authors.

Supplementary material

436_2018_5758_MOESM1_ESM.pdf (713 kb)
ESM 1 (PDF 712 kb)
436_2018_5758_MOESM2_ESM.pdf (16 kb)
ESM 2 (PDF 15 kb)

References

  1. Barski OA, Tipparaju SM, Bhatnagar A (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40(4):553–624.  https://doi.org/10.1080/03602530802431439 CrossRefPubMedPubMedCentralGoogle Scholar
  2. Berdichevsky A, Nedelcu S, Boulias K, Bishop NA, Guarente L, Horvitz HR (2010) 3-Ketoacyl thiolase delays aging of Caenorhabditis elegans and is required for lifespan extension mediated by sir-2.1. Proc Natl Acad Sci U S A 107(44):18927–18932.  https://doi.org/10.1073/pnas.1013854107 CrossRefPubMedPubMedCentralGoogle Scholar
  3. Bun-Ya M, Maebuchi M, Hashimoto T, Yokota S, Kamiryo T (1997) A second isoform of 3-ketoacyl-CoA thiolase found in Caenorhabditis elegans, which is similar to sterol carrier protein x but lacks the sequence of sterol carrier protein 2. Eur J Biochem 245(2):252–259.  https://doi.org/10.1111/j.1432-1033.1997.t01-1-00252.x CrossRefPubMedGoogle Scholar
  4. Cao W, Liu N, Tang S, Bao L, Shen L, Yuan H, Zhao X, Lu H (2008) Acetyl-coenzyme A acyltransferase 2 attenuates the apoptotic effects of BNIP3 in two human cell lines. Biochim Biophys Acta 1780(6):873–880.  https://doi.org/10.1016/j.bbagen.2008.02.007 CrossRefPubMedGoogle Scholar
  5. Cass CL, Johnson JR, Califf LL, Xu T, Hernandez HJ, Stadecker MJ, Yates JR 3rd, Williams DL (2007) Proteomic analysis of Schistosoma mansoni egg secretions. Mol Biochem Parasitol 155(2):84–93.  https://doi.org/10.1016/j.molbiopara.2007.06.002 CrossRefPubMedPubMedCentralGoogle Scholar
  6. Chang HY, Lee JH, Deng WL, Fu TF, Peng HL (1996) Virulence and outer membrane properties of a galU mutant of Klebsiella pneumoniae CG43. Microb Pathog 20(5):255–261.  https://doi.org/10.1006/mpat.1996.0024 CrossRefPubMedGoogle Scholar
  7. Chang Q, Petrash JM (2008) Disruption of aldo-keto reductase genes leads to elevated markers of oxidative stress and inositol auxotrophy in Saccharomyces cerevisiae. Biochim Biophys Acta 1783(2):237–245.  https://doi.org/10.1016/j.bbamcr.2007.08.008 CrossRefPubMedGoogle Scholar
  8. Cortés A, Sotillo J, Muñoz-Antoli C, Fried B, Esteban JG, Toledo R (2015) Altered protein expression in the ileum of mice associated with the development of chronic infections with Echinostoma caproni (Trematoda). PLoS Negl Trop Dis 9(9):e0004082.  https://doi.org/10.1371/journal.pntd.0004082 CrossRefPubMedPubMedCentralGoogle Scholar
  9. Cortés A, Sotillo J, Muñoz-Antoli C, Martin-Grau C, Esteban JG, Toledo R (2016a) Resistance against Echinostoma caproni (Trematoda) secondary infections in mice is not dependent on the ileal protein production. J Proteome 140:37–47.  https://doi.org/10.1016/j.jprot.2016.03.034 CrossRefGoogle Scholar
  10. Cortés A, Sotillo J, Muñoz-Antoli C, Trelis M, Esteban JG, Toledo R (2016b) Definitive host influences the proteomic profile of excretory/secretory products of the trematode Echinostoma caproni. Parasit Vectors 9:185CrossRefPubMedPubMedCentralGoogle Scholar
  11. Dai Y, Wang X, Zhao S, Tang J, Zhang L, Dai J, Zeng M, Lu S, Zhu Y, Su C (2014) Construction and evaluation of replication-defective recombinant optimized triosephosphate isomerase adenoviral vaccination in Schistosoma japonicum challenged mice. Vaccine 32(7):771–778.  https://doi.org/10.1016/j.vaccine.2013.12.059 CrossRefPubMedGoogle Scholar
  12. Damerow S, Hoppe C, Bandini G, Zarnovican P, Buettner FF, Luder CG, Ferguson MA, Routier FH (2015) Depletion of UDP-glucose and UDP-galactose using a degron system leads to growth cessation of Leishmania major. PLoS Negl Trop Dis 9(11):e0004205.  https://doi.org/10.1371/journal.pntd.0004205 CrossRefPubMedPubMedCentralGoogle Scholar
  13. Dosanjh NS, Rawat M, Chung JH, Av-Gay Y (2005) Thiol specific oxidative stress response in mycobacteria. FEMS Microbiol Lett 249(1):87–94.  https://doi.org/10.1016/j.femsle.2005.06.004 CrossRefPubMedGoogle Scholar
  14. Farahyar S, Zaini F, Kordbacheh P, Rezaie S, Safara M, Raoofian R, Heidari M (2013) Overexpression of aldo-keto-reductase in azole-resistant clinical isolates of Candida glabrata determined by cDNA-AFLP. Daru 21:1CrossRefPubMedPubMedCentralGoogle Scholar
  15. Fujino T, Fried B (1993) Echinostoma caproni and E. trivolvis alter the binding of glycoconjugates in the intestinal mucosa of C3H mice as determined by lectin histochemistry. J Helminthol 67(03):179–188.  https://doi.org/10.1017/S0022149X00013110 CrossRefPubMedGoogle Scholar
  16. Godon C, Lagniel G, Lee J, Buhler JM, Kieffer S, Perrot M, Boucherie H, Toledano MB, Labarre J (1998) The H2O2 stimulon in Saccharomyces cerevisiae. J Biol Chem 273(35):22480–22489.  https://doi.org/10.1074/jbc.273.35.22480 CrossRefPubMedGoogle Scholar
  17. Guillou F, Roger E, Mone Y, Rognon A, Grunau C, Theron A, Mitta G, Coustau C, Gourbal BE (2007) Excretory-secretory proteome of larval Schistosoma mansoni and Echinostoma caproni, two parasites of Biomphalaria glabrata. Mol Biochem Parasitol 155:45–56CrossRefPubMedGoogle Scholar
  18. Hennequin C, Collignon A, Karjalainen T (2001) Analysis of expression of GroEL (Hsp60) of Clostridium difficile in response to stress. Microb Pathog 31:255–260CrossRefPubMedGoogle Scholar
  19. Higón M, Monteagudo C, Fried B, Esteban JG, Toledo R, Marcilla A (2008) Molecular cloning and characterization of Echinostoma caproni heat shock protein-70 and differential expression in the parasite derived from low- and high-compatible hosts. Parasitology 135(12):1469–1477.  https://doi.org/10.1017/S0031182008004927 CrossRefPubMedGoogle Scholar
  20. Horwich AL, Fenton WA, Chapman E, Farr GW (2007) Two families of chaperonin: physiology and mechanism. Annu Rev Cell Dev Biol 23(1):115–145.  https://doi.org/10.1146/annurev.cellbio.23.090506.123555 CrossRefPubMedGoogle Scholar
  21. Igual JC, Gonzalez-Bosch C, Dopazo J, Perez-Ortin JE (1992) Phylogenetic analysis of the thiolase family. Implications for the evolutionary origin of peroxisomes. J Mol Evol 35(2):147–155CrossRefPubMedGoogle Scholar
  22. Klein D (2002) Quantification using real-time PCR technology: applications and limitations. Trends Mol Med 8(6):257–260.  https://doi.org/10.1016/S1471-4914(02)02355-9 CrossRefPubMedGoogle Scholar
  23. Klein KA, Fukuto HS, Pelletier M, Romanov G, Grabenstein JP, Palmer LE, Ernst R, Bliska JB (2012) A transposon site hybridization screen identifies galU and wecBC as important for survival of Yersinia pestis in murine macrophages. J Bacteriol 194(3):653–662.  https://doi.org/10.1128/JB.06237-11 CrossRefPubMedPubMedCentralGoogle Scholar
  24. Knowles JR (1991) To build an enzyme. Philos Trans R Soc Lond Ser B Biol Sci 332(1263):115–121.  https://doi.org/10.1098/rstb.1991.0039 CrossRefGoogle Scholar
  25. Kohler H, Rodrigues SP, McCormick BA (2002) Shigella flexneri interactions with the basolateral membrane domain of polarized model intestinal epithelium: role of lipopolysaccharide in cell invasion and in activation of the mitogen-activated protein kinase ERK. Infect Immun 70(3):1150–1158.  https://doi.org/10.1128/IAI.70.3.1150-1158.2002 CrossRefPubMedPubMedCentralGoogle Scholar
  26. Lin J, Qu H, Chen G, He L, Xu Y, Xie Z, Ren M, Sun J, Li S, Chen W, Chen X, Wang X, Li X, Liang C, Huang Y, Yu X (2015) Clonorchis sinensis acetoacetyl-CoA thiolase: identification and characterization of its potential role in surviving in the bile duct. Parasit Vectors 8:125CrossRefPubMedPubMedCentralGoogle Scholar
  27. Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−Delta Delta C(T)) method. Methods 25(4):402–408.  https://doi.org/10.1006/meth.2001.1262 CrossRefPubMedGoogle Scholar
  28. Marcilla A, Trelis M, Cortés A, Sotillo J, Cantalapiedra F, Minguez MT, Valero ML, Sanchez del Pino MM, Muñoz-Antoli C, Toledo R, Bernal D (2012) Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLoS One 7(9):e45974.  https://doi.org/10.1371/journal.pone.0045974 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Mindnich RD, Penning TM (2009) Aldo-keto reductase (AKR) superfamily: genomics and annotation. Hum Genomics 3(4):362–370PubMedPubMedCentralGoogle Scholar
  30. Muñoz-Antoli C, Cortés A, Martin-Grau C, Fried B, Esteban JG, Toledo R (2016a) Partial resistance to homologous challenge infections of the digenean Echinostoma caproni in ICR mice. J Helminthol 90(04):428–433.  https://doi.org/10.1017/S0022149X1500053X CrossRefPubMedGoogle Scholar
  31. Muñoz-Antoli C, Cortés A, Santano R, Sotillo J, Esteban JG, Toledo R (2016b) Interleukin-25 induces resistance against intestinal trematodes. Sci Rep 6:34142.  https://doi.org/10.1038/srep34142 CrossRefPubMedPubMedCentralGoogle Scholar
  32. Muñoz-Antoli C, Cortés A, Sotillo J, Fried B, Esteban JG, Toledo R (2014) Differential expression and glycosylation of proteins in the rat ileal epithelium in response to Echinostoma caproni infection. J Proteome 101:169–178.  https://doi.org/10.1016/j.jprot.2014.02.014 CrossRefGoogle Scholar
  33. Muñoz-Antoli C, Sotillo J, Monteagudo C, Fried B, Marcilla A, Toledo R (2007) Development and pathology of Echinostoma caproni in experimentally infected mice. J Parasitol 93(4):854–859.  https://doi.org/10.1645/GE-1091R.1 CrossRefPubMedGoogle Scholar
  34. Nesper J, Lauriano CM, Klose KE, Kapfhammer D, Kraiss A, Reidl J (2001) Characterization of Vibrio cholerae O1 El tor galU and galE mutants: influence on lipopolysaccharide structure, colonization, and biofilm formation. Infect Immun 69(1):435–445.  https://doi.org/10.1128/IAI.69.1.435-445.2001 CrossRefPubMedPubMedCentralGoogle Scholar
  35. Priebe GP, Dean CR, Zaidi T, Meluleni GJ, Coleman FT, Coutinho YS, Noto MJ, Urban TA, Pier GB, Goldberg JB (2004) The galU gene of Pseudomonas aeruginosa is required for corneal infection and efficient systemic spread following pneumonia but not for infection confined to the lung. Infect Immun 72(7):4224–4232.  https://doi.org/10.1128/IAI.72.7.4224-4232.2004 CrossRefPubMedPubMedCentralGoogle Scholar
  36. Rioux S, Galarneau C, Harel J, Frey J, Nicolet J, Kobisch M, Dubreuil JD, Jacques M (1999) Isolation and characterization of mini-Tn10 lipopolysaccharide mutants of Actinobacillus pleuropneumoniae serotype 1. Can J Microbiol 45(12):1017–1026.  https://doi.org/10.1139/w99-107 CrossRefPubMedGoogle Scholar
  37. Saijuntha W, Sithithaworn P, Chilton NB, Petney TN, Klinbunga S, Satrawaha R, Webster JP, Andrews RH (2009) Impact of temporal changes and host factors on the genetic structure of a population of Opisthorchis viverrini sensu lato in Khon Kaen Province (Thailand). Parasitology 136(09):1057–1063.  https://doi.org/10.1017/S0031182009006441 CrossRefPubMedGoogle Scholar
  38. Sandlin RC, Lampel KA, Keasler SP, Goldberg MB, Stolzer AL, Maurelli AT (1995) Avirulence of rough mutants of Shigella flexneri: requirement of O antigen for correct unipolar localization of IcsA in the bacterial outer membrane. Infect Immun 63(1):229–237PubMedPubMedCentralGoogle Scholar
  39. Sharma A, Rustad T, Mahajan G, Kumar A, Rao KV, Banerjee S, Sherman DR, Mande SC (2016) Towards understanding the biological function of the unusual chaperonin Cpn60.1 (GroEL1) of Mycobacterium tuberculosis. Tuberculosis (Edinb) 97:137–146.  https://doi.org/10.1016/j.tube.2015.11.003 CrossRefGoogle Scholar
  40. Toledo R, Espert A, Carpena I, Muñoz-Antoli C, Fried B, Esteban JG (2004) The comparative development of Echinostoma caproni (Trematoda: Echinostomatidae) adults in experimentally infected hamsters and rats. Parasitol Res 93(6):439–444.  https://doi.org/10.1007/s00436-004-1161-1 CrossRefPubMedGoogle Scholar
  41. Toledo R, Esteban JG, Fried B (2009) Chapter 3. Recent advances in the biology of Echinostomes. Adv Parasitol 69:147–204.  https://doi.org/10.1016/S0065-308X(09)69003-5 CrossRefPubMedGoogle Scholar
  42. Toledo R, Fried B (2005) Echinostomes as experimental models for interactions between adult parasites and vertebrate hosts. Trends Parasitol 21(6):251–254.  https://doi.org/10.1016/j.pt.2005.04.006 CrossRefPubMedGoogle Scholar
  43. Toledo R, Monteagudo C, Espert A, Fried B, Esteban JG, Marcilla A (2006) Echinostoma caproni: intestinal pathology in the golden hamster, a highly compatible host, and the Wistar rat, a less compatible host. Exp Parasitol 112(3):164–171.  https://doi.org/10.1016/j.exppara.2005.11.003 CrossRefPubMedGoogle Scholar
  44. Trelis M, Sotillo J, Monteagudo C, Fried B, Marcilla A, Esteban JG, Toledo R (2011) Echinostoma caproni (Trematoda): differential in vivo cytokine responses in high and low compatible hosts. Exp Parasitol 127(2):387–397.  https://doi.org/10.1016/j.exppara.2010.09.004 CrossRefPubMedGoogle Scholar
  45. Wang MC, O’Rourke EJ, Ruvkun G (2008) Fat metabolism links germline stem cells and longevity in C. elegans. Science 322(5903):957–960.  https://doi.org/10.1126/science.1162011 CrossRefPubMedPubMedCentralGoogle Scholar
  46. Zeilstra-Ryalls J, Fayet O, Georgopoulos C (1991) The universally conserved GroE (Hsp60) chaperonins. Annu Rev Microbiol 45:301–325CrossRefPubMedGoogle Scholar
  47. Zhou J, Liao H, Li S, Zhou C, Huang Y, Li X, Liang C, Yu X (2015a) Molecular identification, immunolocalization, and characterization of Clonorchis sinensis triosephosphate isomerase. Parasitol Res 114(8):3117–3124.  https://doi.org/10.1007/s00436-015-4530-z CrossRefPubMedGoogle Scholar
  48. Zhou S, Jin X, Chen X, Zhu J, Xu Z, Wang X, Liu F, Hu W, Zhou L, Su C (2015b) Heat shock protein 60 in eggs specifically induces tregs and reduces liver immunopathology in mice with schistosomiasis japonica. PLoS One 10(9):e0139133.  https://doi.org/10.1371/journal.pone.0139133 CrossRefPubMedPubMedCentralGoogle Scholar
  49. Zhou Y, Zheng H, Chen Y, Zhang L, Wang K (2009) The Schistosoma japonicum genome reveals features of host-parasite interplay. Nature 460:345–351CrossRefPubMedCentralGoogle Scholar
  50. Zinsser VL, Farnell E, Dunne DW, Timson DJ (2013a) Triose phosphate isomerase from the blood fluke Schistosoma mansoni: biochemical characterisation of a potential drug and vaccine target. FEBS Lett 587(21):3422–3427.  https://doi.org/10.1016/j.febslet.2013.09.022 CrossRefPubMedGoogle Scholar
  51. Zinsser VL, Hoey EM, Trudgett A, Timson DJ (2013b) Biochemical characterisation of triose phosphate isomerase from the liver fluke Fasciola hepatica. Biochimie 95(11):2182–2189.  https://doi.org/10.1016/j.biochi.2013.08.014 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  1. 1.Departamento de Parasitología, Facultad de FarmaciaUniversidad de ValenciaValenciaSpain
  2. 2.Centre for Biodiscovery and Molecular Development of Therapeutics, Building E4James Cook UniversityTownsvilleAustralia

Personalised recommendations