Advertisement

Parasitology Research

, Volume 117, Issue 3, pp 681–688 | Cite as

Toxoplasma gondii: prevalence and characterization of new genotypes in free-range chickens from south Brazil

  • Fernando Emmanuel Gonçalves Vieira
  • João Pedro Sasse
  • Ana Flávia Minutti
  • Ana Carolina Miura
  • Luiz Daniel de Barros
  • Sergio Tosi Cardim
  • Thais Agostinho Martins
  • Mércia de Seixas
  • Milton Issashi Yamamura
  • Chunlei Su
  • João Luis GarciaEmail author
Original Paper

Abstract

Toxoplasma gondii is an intracellular parasite that can infect all warm-blooded animals including humans. Recent studies showed that T. gondii strains from South America are genetically diverse. The present work aimed to determine T. gondii prevalence in free-ranging chicken in northwest Parana state in Brazil by two serological tests, to isolate the parasites from seropositive chickens and to genotype the isolates. Antibodies to T. gondii in 386 serum samples from 24 farms were investigated by immunofluorescence antibody assay (IFA) and modified agglutination test (MAT). Samples having titers ≥ 16 were considered positive for both tests. Among the 386 serum samples, 102 (26.4%) were positive for IFA, 64 (16.6%) were positive for MAT, 47 (12.2%) were positive in both tests, and 119 (30.8%) were positive in at least one of the two tests. Brain and pool of heart, lung, and liver from the 119 seropositive chickens were used for mouse bioassay to isolate the parasites. Thirty eight (31.9%) of these seropositive chickens were considered positives in mouse bioassay and 18 isolates were obtained. The isolates were characterized by 10 PCR-RFLP genetic markers including SAG1, SAG2 (5′-3′SAG2, alt.SAG2), SAG3, BTUB, GRA6, c22-8, c29-2, L358, PK1, and Apico. Results of genotyping were compared with the genotypes in ToxoDB database. It revealed ten genotypes, including ToxoDB PCR-RFLP genotypes #6 (n = 2), #19 (n = 1), #21 (n = 2), #111 (n = 2), #152 (n = 1), and #175 (n = 1) and four new types not described before. Our results confirmed a high genetic diversity of this parasite in southern Brazil and also showed that the use of two serological tests in combination can improve the chance of T. gondii isolation. More studies should be taken to determine the zoonotic potential of chickens in the transmission of T. gondii.

Keywords

Free-range chicken Toxoplasma gondii Serological tests PCR-RFLP Genotyping 

Notes

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Ajzenberg D, Bañuls AL, Su C, Dumètre A, Demar M, Carme B, Dardé ML (2004) Genetic diversity, clonality and sexuality in Toxoplasma gondii. Int J Parasitol 34(10):1185–1196.  https://doi.org/10.1016/j.ijpara.2004.06.007 CrossRefPubMedGoogle Scholar
  2. Bonna ICF, Figueiredo FB, Costa T, Vicente RT, Santiago CAD, Nicolau JL, Neves LB, Millar PR, Sobreiro LG, Amendoeira MRR (2006) Estudo soroepidemiológico da infecção por Toxoplasma gondii em suíno s e frangos, para abate, em região rural do Rio de Janeiro. Rev Bras Cienc Vet 13(3):186–189Google Scholar
  3. Camargo M (1974) Introdução às técnicas de Imunofluorescência. Revista Brasileira de Patologia Clínica 10:143–171Google Scholar
  4. Casartelli-Alves L, Boechat VC, Macedo-Couto R, Ferreira LC, Nicolau JL, Neves LB, Millar PR, Vicente RT, Oliveira RV, Muniz AG, Bonna IC, Amendoeira MR, Silva RC, Langoni H, Schubach TM, Menezes RC (2014) Sensitivity and specificity of serological tests, histopathology and immunohistochemistry for detection of Toxoplasma gondii infection in domestic chickens. Vet Parasitol 204(3–4):346–351.  https://doi.org/10.1016/j.vetpar.2014.05.039 CrossRefPubMedGoogle Scholar
  5. Desmonts G, Remington JS (1980) Direct agglutination test for diagnosis of Toxoplasma infection: method for increasing sensitivity and specificity. J Clin Microbiol 11(6):562–568PubMedPubMedCentralGoogle Scholar
  6. Dubey JP (1986) Toxoplasmosis. J Am Vet Med Assoc 189(2):166–170PubMedGoogle Scholar
  7. Dubey JP (1998) Refinement of pepsin digestion method for isolation of Toxoplasma gondii from infected tissues. Vet Parasitol 74(1):75–77.  https://doi.org/10.1016/S0304-4017(97)00135-0 CrossRefPubMedGoogle Scholar
  8. Dubey JP, Baker DG, Davis SW, Urban JF Jr, Shen SK (1994) Persistence of immunity to toxoplasmosis in pigs vaccinated with a nonpersistent strain of Toxoplasma gondii. Am J Vet Res 55(7):982–987PubMedGoogle Scholar
  9. Dubey JP, Graham DH, da Silva DS, Lehmann T, Bahia-Oliveira LM (2003a) Toxoplasma gondii isolates of free-ranging chickens from Rio de Janeiro, Brazil: mouse mortality, genotype, and oocyst shedding by cats. J Parasitol 89(4):851–853.  https://doi.org/10.1645/GE-60R CrossRefPubMedGoogle Scholar
  10. Dubey JP, Venturini MC, Venturini L, Piscopo M, Graham DH, Dahl E, Sreekumar C, Vianna MC, Lehmann T (2003b) Isolation and genotyping of Toxoplasma gondii from free-ranging chickens from Argentina. J Parasitol 89(5):1063–1064.  https://doi.org/10.1645/GE-126 CrossRefPubMedGoogle Scholar
  11. Dubey JP, Patitucci AN, Su C, Sundar N, Kwok OC, Shen SK (2006) Characterization of Toxoplasma gondii isolates in free-range chickens from Chile, South America. Vet Parasitol 140(1–2):76–82.  https://doi.org/10.1016/j.vetpar.2006.03.023 CrossRefPubMedGoogle Scholar
  12. Dubey JP, Gennari SM, Sundar N, Vianna MC, Bandini LM, Yai LE, Kwok CH, Suf C (2007) Diverse and atypical genotypes identified in Toxoplasma gondii from dogs in Sao Paulo, Brazil. J Parasitol 93(1):60–64.  https://doi.org/10.1645/GE-972R.1 CrossRefPubMedGoogle Scholar
  13. Dubey JP, Velmurugan GV, Chockalingam A, Pena HFJ, de Oliveira LN, Leifer CA, Gennari SM, Bahia-Oliveira LM, Su C (2008) Genetic diversity of Toxoplasma gondii isolates from chicken from Brazil. Vet Parasitol 157(3–4):299–305.  https://doi.org/10.1016/j.vetpar.2008.07.036 CrossRefPubMedPubMedCentralGoogle Scholar
  14. Dubey JP, Rajendran C, Costa DG, Ferreira LR, Kwok OC, Qu D, Su C, Marvulo MF, Alves LC, Mota RA, Silva JC (2010) New Toxoplasma gondii genotypes isolated from free-range chickens from the Fernando de Noronha, Brazil: unexpected findings. J Parasitol 96(4):709–712.  https://doi.org/10.1645/GE-2425.1 CrossRefPubMedGoogle Scholar
  15. Feitosa TF, Vilela VLR, Almeida-Neto JL, dos Santos A, de Morais DF, Athayde AC, de Azevedo SS, Pena HFJ (2016) First study on seroepidemiology and isolation of Toxoplasma gondii in free-range chickens in the semi-arid region of Paraíba state, Brazil. Parasitol Res 115(10):3983–3990.  https://doi.org/10.1007/s00436-016-5164-5 CrossRefPubMedGoogle Scholar
  16. Feitosa TF, Vilela VLR, de Almeida-Neto JL, de Melo LRB, de Morais DF, Alves BF, Nakashima F, Gennari SM, Athayde ACR, Pena HFJ (2017) First report of typical Brazilian Toxoplasma gondii genotypes from isolates of free-range chickens (Gallus gallus domesticus) circulating in the state of Paraíba, Northeast Brazil. Parasitol Res 116(8):2265–2270.  https://doi.org/10.1007/s00436-017-5531-x CrossRefPubMedGoogle Scholar
  17. Garcia JL, Navarro IT, Ogawa L, Marana ERM (2000) Soroprevalência do Toxoplasma gondii em galinhas (Gallus gallus domesticus) de criações domésticas oriundas de propriedades rurais do Norte do Paraná, Brasil. Cienc Rural 30(1):123–127.  https://doi.org/10.1590/S0103-84782000000100020 CrossRefGoogle Scholar
  18. Holsback L, Pena HFJ, Ragozo A, Lopes EG, Gennari SM, Soares RM (2012) Serologic and molecular diagnostic and bioassay in mice for detection of Toxoplasma gondii in free range chickens from Pantanal do Mato Grosso do Sul. Pesq Vet Bras 32(8):721–726.  https://doi.org/10.1590/S0100-736X2012000800007 CrossRefGoogle Scholar
  19. Howe DK, Sibley LD (1994) Toxoplasma gondii: analysis of different laboratory stocks of the RH strain reveals genetic heterogeneity. Exp Parasitol 78(2):242–245.  https://doi.org/10.1006/expr.1994.1024 CrossRefPubMedGoogle Scholar
  20. Howe DK, Sibley LD (1995) Toxoplasma gondii comprises three clonal lineages: correlation of parasite genotype with human disease. J Infect Dis 172(6):1561–1566.  https://doi.org/10.1093/infdis/172.6.1561 CrossRefPubMedGoogle Scholar
  21. Huson DH, Bryant D (2006) Application of phylogenetic networks in evolutionary studies. Mol Biol Evol 23(2):254–267.  https://doi.org/10.1093/molbev/msj030 CrossRefPubMedGoogle Scholar
  22. Khan A, Jordan C, Muccioli C, Vallochi AL, Rizzo LV, Belfort R Jr, Vitor RW, Silveira C, Sibley LD (2006) Genetic divergence of Toxoplasma gondii strains associated with ocular toxoplasmosis, Brazil. Emerg Infect Dis 12(6):942–949.  https://doi.org/10.3201/eid1206.060025 CrossRefPubMedPubMedCentralGoogle Scholar
  23. Landis JR, Koch GG (1977) The measurement of observer agreement for categorical data. Biometrics 33(1):159–174.  https://doi.org/10.2307/2529310 CrossRefPubMedGoogle Scholar
  24. Lehmann T, Graham DH, Dahl ER, Bahia-Oliveira LM, Gennari SM, Dubey JP (2004) Variation in the structure of Toxoplasma gondii and the roles of selfing, drift, and epistatic selection in maintaining linkage disequilibria. Infect Genet Evol 4(2):107–114.  https://doi.org/10.1016/j.meegid.2004.01.007 CrossRefPubMedGoogle Scholar
  25. Lindström I, Sundar N, Lindh J, Kironde F, Kabasa JD, Kwok OC, Dubey JP, Smith JE (2008) Isolation and genotyping of Toxoplasma gondii from Ugandan chickens reveals frequent multiple infections. Parasitology 135(1):39–45CrossRefPubMedGoogle Scholar
  26. Literak I, Hejlicek K (1993) Incidence of Toxoplasma gondii in populations of domestic birds in the Czech Republic. Avian Pathol 22(2):275–281.  https://doi.org/10.1080/03079459308418920 CrossRefPubMedGoogle Scholar
  27. Magalhães FJ, da Silva JG, Ribeiro-Andrade M, Pinheiro Júnio JW, Mota RA (2016) High prevalence of toxoplasmosis in free-range chicken of Fernando de Noronha archipelago, Brazil. Acta Trop 159:58–61.  https://doi.org/10.1016/j.actatropica.2016.03.034 CrossRefPubMedGoogle Scholar
  28. Millar PR, Alves FXM, Teixeira VQ, Vicente RT, Menezes EM, Sobreiro LG, Pereira VLA, Amendoeira MRR (2012) Occurence of infection with Toxoplasma gondii and factors associated with transmission in broiler chickens and laying hens in different raising systems. Pesq Vet Bras 32(3):231–236.  https://doi.org/10.1590/S0100-736X2012000300009 CrossRefGoogle Scholar
  29. Pena HFJ, Gennari SM, Dubey JP, SU C (2008) Population structure and mouse-virulence of Toxoplasma gondii in Brazil. Int J Parasitol 38(5):561–569.  https://doi.org/10.1016/j.ijpara.2007.09.004 CrossRefPubMedGoogle Scholar
  30. Ruiz A, Frenkel JK (1980) Intermediate and transport hosts of Toxoplasma gondii in Costa Rica. Am J Trop Med Hyg 29(6):1161–1166.  https://doi.org/10.4269/ajtmh.1980.29.1161 CrossRefPubMedGoogle Scholar
  31. Shwab EK, Jiang T, Pena HF, Gennari SM, Dubey JP, Chunlei SC (2016) The ROP18 and ROP5 gene allele types are highly predictive of virulence in mice across globally distributed strains of Toxoplasma gondii. Int J Parasitol 46(2):141–146.  https://doi.org/10.1016/j.ijpara.2015.10.005 CrossRefPubMedGoogle Scholar
  32. Soares RM, Holsback LS, da Silva AV, Ragozo A, Galli S, Lopes EG, Gennari SM, Pena HFJ (2011) Genotyping of Toxoplasma gondii isolates from free range chickens in the Pantanal area of Brazil. Vet Parasitol 178(1–2):29–34.  https://doi.org/10.1016/j.vetpar.2010.12.037 CrossRefPubMedGoogle Scholar
  33. Sousa IC, Pena HFJ, Santos LS, Gennari SM, Costa FN (2016) First isolation and genotyping of Toxoplasma gondii from free-range chickens on São Luis island, Maranhão state, Brazil, with a new genotype described. Vet Parasitol 223:159–164.  https://doi.org/10.1016/j.vetpar.2016.04.041 CrossRefPubMedGoogle Scholar
  34. Su C, Shwab EK, Zhou P, Zhu XQ, Dubey JP (2010) Moving towards an integrated approach to molecular detection and identification of Toxoplasma gondii. Parasitology 137(1):1–11.  https://doi.org/10.1017/S0031182009991065 CrossRefPubMedGoogle Scholar
  35. Zhu J, Yin J, Xiao Y, Jiang N, Ankarlev J, Lindh J, Chen Q (2008) A sero-epidemiological survey of Toxoplasma gondii infection in free-range and caged chickens in northeast China. Vet Parasitol 158(4):360–363.  https://doi.org/10.1016/j.vetpar.2008.09.024 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Fernando Emmanuel Gonçalves Vieira
    • 1
  • João Pedro Sasse
    • 2
  • Ana Flávia Minutti
    • 2
  • Ana Carolina Miura
    • 2
  • Luiz Daniel de Barros
    • 2
  • Sergio Tosi Cardim
    • 2
  • Thais Agostinho Martins
    • 2
  • Mércia de Seixas
    • 2
  • Milton Issashi Yamamura
    • 2
  • Chunlei Su
    • 3
  • João Luis Garcia
    • 2
    Email author
  1. 1.Parasitology and Zoology LaboratoryUniversidade Estadual do Norte do Paraná - UENPJacarezinhoBrazil
  2. 2.Protozoology Laboratory, Preventive Veterinary Medicine DepartamentUniversidade Estadual de LondrinaLondrinaBrazil
  3. 3.Microbiology Department, Faculty of MedicineUniversity of TennesseeKnoxvilleUSA

Personalised recommendations