Parasitology Research

, Volume 116, Issue 9, pp 2517–2526 | Cite as

The effect of water contamination and host-related factors on ectoparasite load in an insectivorous bat

  • Carmi KorineEmail author
  • Shai Pilosof
  • Amit Gross
  • Juan B. Morales-Malacara
  • Boris R. Krasnov
Original Paper


We examined the effects of sex, age, and reproductive state of the insectivorous bat Pipistrellus kuhlii on the abundance and prevalence of arthropod ectoparasites (Macronyssidae and Cimicidae) in habitats with either sewage-polluted or natural bodies of water, in the Negev Desert, Israel. We chose water pollution as an environmental factor because of the importance of water availability in desert environments, particularly for P. kuhlii, which needs to drink on a daily basis. We predicted that parasite infestation rates would be affected by both environment and demographic cohort of the host. We found that female bats in the polluted site harbored significantly more mites than female bats in the natural site and that juveniles in the polluted site harbored significantly more cimicid individuals than juveniles in the natural site. We further found that age and sex (host-related factors) affected ectoparasite prevalence and intensity (i.e., the abundance of parasites) in the polluted site. Our results may suggest that the interaction between host-related and environment-related factors affected parasite infestations, with females and young bats being more susceptible to ectoparasites when foraging over polluted water. This effect may be particularly important for bats that must drink or forage above water for other wildlife that depend on drinking water for survival.


Desert Bats Ectoparasites Mites Cimicid Water quality 



We thank Julie Shapiro, Marcela Gallero, Dr. Muñoz-Garcia, and Laura Del Castillo for their technical assistance in the field and the laboratory. We also thank the reviewers for their helpful comments. This study was supported by Israeli Ministry of Science and Technology (to CK and AG). This is publication no. 936 of the Mitrani Department of Desert Ecology.


  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans. Autom. Control 19:716–723CrossRefGoogle Scholar
  2. Altizer S, Nunn CL, Thrall PH, Gittleman JL, Antonovics J, Cunningham AA, Dobson AP, Ezenwa V, Jones KE, Pedersen AB, Poss M, Pulliam JRC (2003) Social organization and parasite risk in mammals: integrating theory and empirical studies. Annu Rev Ecol Evol Syst 34:517–547CrossRefGoogle Scholar
  3. Ancillotto L, Serangeli MT, Russo D (2012) Spatial proximity between newborns influences the development of social relationships in bats. Ethology 118:331–340CrossRefGoogle Scholar
  4. APHA, AWWA, WEF (2005) Standard methods for the examination of water and wastewater, 21st edn. American Public Health Association, Washington, DCGoogle Scholar
  5. Barak Y, Yom-Tov Y (1991) The mating system of Pipistrellus kuhlii (Microchiroptera) in Israel. Mammalia 55:285–292CrossRefGoogle Scholar
  6. Barnes RSK, Calow P, Olive PJW (1988) The invertebrates: a new synthesis. Blackwell Scientific, OxfordGoogle Scholar
  7. Bartonička T (2008) Cimex pipistrelli (Heteroptera, Cimicidae) and the dispersal propensity of bats: an experimental study. Parasitol Res 104:163–168CrossRefPubMedGoogle Scholar
  8. Bayat S, Geiser F, Kristiansen P, Wilson SC (2014) Organic contaminants in bats: trends and new issues. Environ Inter 28(63):40–52CrossRefGoogle Scholar
  9. Blanar CA, Hewitt M, McMaster M, Kirk J, Wang Z, Norwood W, Marcogliese DJ (2016) Parasite community similarity in Athabasca River trout-perch (Percopsis omiscomaycus) varies with local-scale land use and sediment hydrocarbons, but not distance or linear gradients. Parasitolo Res 115:3853–3866CrossRefGoogle Scholar
  10. Beldomenico PM, Begon M (2010) Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol Evol 25:21–27CrossRefPubMedGoogle Scholar
  11. Benejam L, Benito J, García-Berthou E (2010) Decreases in condition and fecundity of freshwater fishes in a highly polluted reservoir. Water Air Soil Poll 210:231–242CrossRefGoogle Scholar
  12. Bennett B, Thies M (2007) Organochlorine pesticide residues in guano of Brazilian free-tailed bats, Tadarida brasiliensis saint-Hilaire, from East Texas. B Environ Contam Tox 78:191–194CrossRefGoogle Scholar
  13. Boag B, Lello J, Fenton A, Tompkins DM, Hudson PJ (2001) Patterns of parasite aggregation in the wild European rabbit (Oryctolagus cuniculus). Inter J Parasitol 31:1421–1428CrossRefGoogle Scholar
  14. Brodkin MA, Madhoun H, Rameswaran M, Vatnick I (2007) Atrazine is an immune disruptor in adult northern leopard frogs (Rana pipiens). Environ Tox Chem 26:80–84CrossRefGoogle Scholar
  15. Carravieri A, Scheifler R (2013) Effets des substances chimiques sur les chiropteres: synthese bibliographique. Le Rhinolophe 19:1e46Google Scholar
  16. Christe P, Arlettaz R, Vogel P (2000) Variation in intensity of a parasitic mite (Spinturnix myoti) in relation to the reproductive cycle and immunocompetence of its bat host (Myotis myotis). Ecol Lett 3:207–212CrossRefGoogle Scholar
  17. Christe P, Glaizot O, Evanno G, Bruyndonckx N, Devevey G, Yannic G, Patthey P, Maeder A, Vogel P, Arlettaz R (2007) Host sex and ectoparasites choice: preference for, and higher survival on female hosts. J Anim Ecol 76:703–710CrossRefPubMedGoogle Scholar
  18. Clark DR Jr, Shore RF (2001) In: Shore RF, Rattner BA (eds) Chiroptera. Ecotoxicology of wild mammals. John Wiley & Sons Ltd, Chichester, pp 159–214Google Scholar
  19. Combes C (2001) Specializatoin in parasites. In: Combes C (ed) Parasitism: the ecology and evolution of intimate interactions. The University of Chicago Press, Chicago, pp 45–94Google Scholar
  20. Cotter SC, Simpson SJ, Raubenheimer D, Wilson K (2011) Macronutrient balancemediates trade-offs between immune function and life history traits. Funct Ecol 25:186–198CrossRefGoogle Scholar
  21. Cottontail VM, Wellinghausen N, Kalko EKV (2009) Habitat fragmentation and haemoparasites in the common fruit bat, Artibeus jamaicensis (Phyllostomidae) in a tropical lowland forest in Panama. Parasitology 136:1133–1145CrossRefPubMedGoogle Scholar
  22. Dick CW, Patterson BD (2006) Bat flies: obligate ectoparasites of bats. In: Morand S, Krasnov BR, Poulin R (eds) Micromammals and macroparasites: from evolutionary ecology to management. Springer, Tokyo, pp 179–194CrossRefGoogle Scholar
  23. de Swart R, Ross P, Vedder L, Timmerman H, Heisterkamp S, Van Loveren H, Vos J, Reijnders PJ, Osterhaus A (1994) Impairment of immune function in harbor seals (Phoca vitulina) feeding on fish from polluted waters. Ambio 23:155–159Google Scholar
  24. Eeva T, Klemola T (2013) Variation in prevalence and intensity of two avian ectoparasites in a polluted area. Parasitology 140:1384–1393CrossRefPubMedGoogle Scholar
  25. Fenton MB, Simmons NB (2015) Bats: a world of science and mystery. University of Chicago PressGoogle Scholar
  26. Folstad I, Karter A (1992) Parasites, bright males, and the immunocompetence handicap. Am Nat 139:603–622CrossRefGoogle Scholar
  27. Frank HK, Mendenhall CD, Judson SD, Daily GC, Hadly EA (2016) Anthropogenic impacts on costa Rican bat parasitism are sex specific. Ecol Evol 6:4898–4909CrossRefPubMedPubMedCentralGoogle Scholar
  28. Gerell R, Lundberg K (1993) Decline of a bat Pipistrellus pipistrellus population in an industrialized area in south Sweden. Biol Conserv 65:153–157CrossRefGoogle Scholar
  29. Gillespie TR, Chapman CA, Greiner EC (2005) Effects of logging on gastrointestinal parasite infections and infection risk in African primates. J Appl Ecol 42:699–707CrossRefGoogle Scholar
  30. Grasman KA, Fox GA (2001) Associations between altered immune function and organochlorine contamination in young Caspian terns (Sterna caspia) from Lake Huron, 1997–1999. Ecotoxicoly 10:101–114CrossRefGoogle Scholar
  31. Kaňuch P, Krištín A, Krištofík J (2005) Phenology, diet, and ectoparasites of Leisler's bat (Nyctalus leisleri) in the western Carpathians (Slovakia). Acta Chiropterol 7:249–257CrossRefGoogle Scholar
  32. Khan RA (2012) Host-parasite interactions in some fish species. J Parasitol Res 23:72–80Google Scholar
  33. Khan RA, Thulin J (1991) Influence of pollution on parasites of aquatic animals. Adv Parasitol 30:201–238CrossRefPubMedGoogle Scholar
  34. Korine C, Adams R, Russo D, Fisher-Phelps M, Jacobs D (2015) Bats and water: anthropogenic alterations threaten global bat populations. In: Bats in the Anthropocene: conservation of bats in a changing world. Kingston T, Voigt C, (eds) Springer International 215–233Google Scholar
  35. Korine C, Krasnov BR, Khokhlova IS, Pinshow B (2012) Effects of host diet and thermal state on feeding performance of the flea Xenopsylla ramesis. J Exp Biol 215:1435–1441CrossRefPubMedGoogle Scholar
  36. Korine C, Pinshow B (2004) Guild structure, foraging space use, and distribution in a community of insectivorous bats in the Negev Desert. J Zool 262:187–196CrossRefGoogle Scholar
  37. Krasnov BR, Morand S, Hawlena H, Khokhlova I, Shenbrot G (2005) Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 146:209–217CrossRefPubMedGoogle Scholar
  38. Kunz TH, Anthony EL (1982) Age estimation and post-natal growth in the bat Myotis lucifugus. J Mammal 63:23–32CrossRefGoogle Scholar
  39. Kunz TH, Lumsden LF (2003) Ecology of cavity and foliage roosting bats. In: Kunz TH, Fenton MB (eds) Bat ecology. University of Chicago Press, Chicago, pp 3–89Google Scholar
  40. Lafferty KD, Kuris AM (1999) How environmental stress affects the impacts of parasites. Limnol Oceanogr 44:925–931CrossRefGoogle Scholar
  41. Lafferty KD, Kuris AM (2005) Parasitism and environmental disturbances. Parasitism and ecosystems. In: Thomas F, Renaud F, Guégan JF (eds) Parasitism and ecosystems. Oxford University Press, New York, pp 113–124CrossRefGoogle Scholar
  42. Lewis SE (1996) Low roost-site fidelity in pallid bats: associated factors and effect on group stability. Behav Ecol Sociobiol 39:335–344CrossRefGoogle Scholar
  43. Lourenço SI, Palmeirim JM (2007) Can mite parasitism affect the condition of bat hosts? Implications for the social structure of colonial bats. J Zool 273:161–168CrossRefGoogle Scholar
  44. Lourenço S, Palmeirim JM (2008) Which factors regulate the reproduction of ectoparasites of temperate-zone cave-dwelling bats? Parasitol Res 104:127–134CrossRefPubMedGoogle Scholar
  45. Lučan RK (2006) Relationships between the parasitic mite Spinturnix andegavinus (Acari: Spinturnicidae) and its bat host, Myotis daubentonii (Chiroptera: Vespertilionidae): seasonal, sex- and age-related variation in infestation and possible impact of the parasite on the host condition and roosting behaviour. Folia Parasit 53:147–152CrossRefGoogle Scholar
  46. Lüftl S, Freitag B, Deutz AC, Steineck TA, Tataruch FA (2005) Concentrations of organochlorine pesticides and PCBs in the liver of European bats (Microchiroptera). Fresenius Environ Bull 14:167–172Google Scholar
  47. McCracken GF, Wilkinson GS (2000) Bat mating systems. In: Crichton EG, Krutzsch PH (eds) Reproductive biology of bats. Academic press, San Diego, pp 321–362CrossRefGoogle Scholar
  48. Marshall AG (1982) Ecology of insects ectoparasitic on bats. In: Kunz TH (ed) Ecology of bats. Springer, USA, pp 369–401CrossRefGoogle Scholar
  49. McLean JA, Speakman JR (1997) Non-nutritional maternal support in the brown long-eared bat. Anim Behav 54:1193–1204CrossRefPubMedGoogle Scholar
  50. Meteorology Unit Jacob Blaustein Institutes for Desert Research (n.d.) Desert meteorology.
  51. Moore MS, Reichard JD, Murtha TD, Zahedi B, Fallier RM, Kunz TH (2011) Specific alterations in complement protein activity of little brown Myotis (Myotis lucifugus) hibernating in white-nose syndrome affected sites. PLoS One 6:e27430CrossRefPubMedPubMedCentralGoogle Scholar
  52. Morales-Malacara JB, Juste J (2002) Two new species of the genus Periglischrus (Acari: Mesostigmata: Spinturnicidae) on two bat species of the genus Tonatia (Chiroptera: Phyllostomidae) from southeastern Mexico, with additional data from Panama. J Med Entomol 39:298–311CrossRefPubMedGoogle Scholar
  53. Morley NJ, Costa HH, Lewis JW (2010) Effects of a chemically polluted discharge on the relationship between fecundity and parasitic infections in the chub (Leuciscus cephalus) from a river in southern England. Arch Environ Con Tox 58:783–792CrossRefGoogle Scholar
  54. Mos L, Morsey B, Jeffries SJ, Yunker MB, Raverty S, Guise SD, Ross PS (2006) Chemical and biological pollution contribute to the immunological profiles of free-ranging harbor seals. Environ Toxicol Chem 25:3110–3117CrossRefPubMedGoogle Scholar
  55. Naidoo S, Vosloo D, Schoeman MC (2015) Haematological and genotoxic responses in an urban adapter, the banana bat, foraging at wastewater treatment works. Ecotox Environ Safe 114:304–311CrossRefGoogle Scholar
  56. Naidoo S, Vosloo D, Schoeman MC (2016) Pollutant exposure at wastewater treatment works affects the detoxification organs of an urban adapter, the banana bat. Environ Pollut 208:830–839CrossRefPubMedGoogle Scholar
  57. O’Shea TJ, Everette AL, Ellison LE (2001) Cyclodiene insecticide, DDE, DDT, arsenic, and mercury contamination of big brown bats (Eptesicus fuscus) foraging at a Colorado Superfund site. Arch Environ Con Tox 40:112–20Google Scholar
  58. Patterson B, Dick C, Dittmar K (2007) Roosting habits of bats affect their parasitism by bat flies (Diptera: Streblidae). J Tropl Ecol 23:177–189CrossRefGoogle Scholar
  59. Patterson B, Dick C, Dittmar K (2008) Sex biases in parasitism of neotropical bats by bat flies (Diptera: Streblidae). J Trop Ecol 24:387–396CrossRefGoogle Scholar
  60. Pedersen SC, Popowics TE, Kwiecinski GG, Knudsen DE (2012) Sublethal pathology in bats associated with stress and volcanic activity on Montserrat, West Indies. J Mammal 93:1380–1392CrossRefGoogle Scholar
  61. Pikula J, Zukal J, Adam V, Bandouchova H, Beklova M, Hajkova P, Horakova J, Kizek R, Valentikova L (2010) Heavy metals and metallothionein in vespertilionid bats foraging over aquatic habitats in the Czech Republic. Environ Tox Chem 29:501–506CrossRefGoogle Scholar
  62. Presley SJ, Willig MR (2008) Intraspecific patterns of ectoparasite abundances on Paraguayan bats: effects of host sex and body size. J Trop Ecol 24:75–83CrossRefGoogle Scholar
  63. Pilosof S, Dick CW, Korine C, Patterson BD, Krasnov BR (2012) Effects of anthropogenic disturbance and climate on patterns of bat fly parasitism. PLoS One 7:e41487CrossRefPubMedPubMedCentralGoogle Scholar
  64. Pilosof S, Korine C, Moore M, Krasnov BR (2014) Sewage-water contamination alters immune response in a desert bat. Mammal Biol 79:183–188CrossRefGoogle Scholar
  65. Poulin R (2007) Evolutionary ecology of parasites: from individuals to communities, second edn. Princeton Univ PressGoogle Scholar
  66. Development Core Team R (2010) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria Google Scholar
  67. Racey PA (1974) Ageing and assessment of reproductive status of pipistrelle bats, Pipistrellus pipistrellus. J Zool 173:264–271CrossRefPubMedGoogle Scholar
  68. Racey PA (1988) Reproductive assessment in bat. Ecological and behavioral methods for the study of bats (Kunz TH ed). Smithsonian Institution Press, Washington DC 31–34Google Scholar
  69. Radovsky FJ (1967) The Macronyssidae and Laelapidae (Acarina: Mesostigmata) parasitic on bats. Univ Calif Publ Entomol 46:1–288Google Scholar
  70. Razgour O, Korine C, Saltz D (2010) Pond characteristics as determinants of species diversity and community composition in desert bats. Anim Conserv 13:505–513CrossRefGoogle Scholar
  71. Reckardt K, Kerth G (2009) Does the mode of transmission between hosts affect the host choice strategies of parasites? Implications from a field study on bat fly and wing mite infestation of Bechstein's bats. Oikos 118:183–190CrossRefGoogle Scholar
  72. Reiczigel J, Rósza L (2005) Quantitative parasitology 3.0. Distributed by the authors, BudapestGoogle Scholar
  73. Reinhardt K, Siva-Jothy MT (2007) Biology of the bed bugs (Cimicidae). Annu Rev Entomol 52:351–374CrossRefPubMedGoogle Scholar
  74. Rózsa L, Reiczigel J, Majoros G (2000) Quantifying parasites in samples of hosts. J Parasitol 86:228–232CrossRefPubMedGoogle Scholar
  75. Safi K, Kerth G (2007) Comparative analyses suggest that information transfer promoted sociality in male bats in the temperate zone. Am Nat 170:465–472CrossRefPubMedGoogle Scholar
  76. Saville D (1990) Multiple comparison procedures: the practical solution. Am Stat 44:174–180Google Scholar
  77. Serangeli MT, Cistrone L, Ancillotto L, Tomassini A, Russo D (2012) The post-release fate of hand-reared orphaned bats: survival and habitat. Anim Welf 21:9–18CrossRefGoogle Scholar
  78. Shore RF, Rattner BA (2001) Ecotoxicology of wild mammals. WileyGoogle Scholar
  79. Sonenshine DE, Clifford CM, Kohls GM (1962) The identification of larvae of the genus Argas (Acarina: Argasidae). Acarologia 4:193–214Google Scholar
  80. Sures B, Nachev M, Selbach C, Marcogliese DJ (2017) Parasite responses to pollution: what we know and where we go in ‘environmental parasitology’. Parasites Vec 10:65CrossRefGoogle Scholar
  81. Swanepoel RE, Racey PA, Shore RF, Speakman JR (1999) Energetic effects of sublethal exposure to lindane on pipistrelle bats (Pipistrellus pipistrellus). Environ Pollut 104:169–177CrossRefGoogle Scholar
  82. ter Hofstede HM, Fenton MB (2005) Relationships between roost preferences, ectoparasite density, and grooming behaviour of neotropical bats. J Zool 266:333–340CrossRefGoogle Scholar
  83. UNESCO (1963) Bioclimatic map of the Mediterranean zone. Arid Zone Res:1–58Google Scholar
  84. Veiga JP, Salvador A, Merino S, Puerta M (1998) Reproductive effort affects immune response and parasite infection in a lizard: a phenotypic manipulation using testosterone. Oikos 82:313–318CrossRefGoogle Scholar
  85. Vidal-Martínez VM, Pech D, Sures B, Purucker ST, Poulin R (2010) Can parasites really reveal environmental impact? Trends Parasitol 26:44–51CrossRefPubMedGoogle Scholar
  86. Volguin VI (1987) In: Brill EJ (ed) Acarina of the family Cheyletidae of the world. Amerind Publ. Co., New DelhiGoogle Scholar
  87. Wada H, Yates DE, Evers DC, Taylor RJ, Hopkins WA (2010) Tissue mercury concentrations and adrenocortical responses of female big brown bats (Eptesicus fuscus) near a contaminated river. Ecotoxicology 17:1277–1284CrossRefGoogle Scholar
  88. Walker LA, Simpson VR, Rockett L, Wienburg CL, Shore RF (2007) Heavy metal contamination in bats in Britain. Environ Pollut 148:483–490CrossRefPubMedGoogle Scholar
  89. Wolinska J, King KC (2009) Environment can alter selection in host–parasite interactions. Trends Parasitol 25:236–244CrossRefPubMedGoogle Scholar
  90. Warburton EM, Pearl CA, Vonhof MJ (2016) Relationships between host body condition and immunocompetence, not host sex, best predict parasite burden in a bat-helminth system. Parasitol Res 115:2155–2164CrossRefPubMedGoogle Scholar
  91. Hõrak P, Tummeleht L, Talvik H (2006) Predictors and markers of resistance to neurotropic nematode infection in rodent host. Parasitol Res 98:396–402CrossRefPubMedGoogle Scholar
  92. Zahn A, Rupp D (2004) Ectoparasite load in European vespertilionid bats. J Zool 262:383–391CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  • Carmi Korine
    • 1
    Email author
  • Shai Pilosof
    • 1
  • Amit Gross
    • 2
  • Juan B. Morales-Malacara
    • 3
  • Boris R. Krasnov
    • 1
  1. 1.Mitrani Department of Desert Ecology, Swiss Institute for Dryland Environmental and Energy Research, Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the Negev, Sede Boqer CampusBeershebaIsrael
  2. 2.Department of Environmental Hydrology and Microbiology, Zuckerberg Institute for Water Research, Jacob Blaustein Institutes for Desert ResearchBen-Gurion University of the Negev, Sede Boqer CampusBeershebaIsrael
  3. 3.Laboratorio Espeleobiología y Acarología, Unidad Multidisciplinaria de Docencia e Investigación, Facultad de CienciasUniversidad Nacional Autónoma de México, Campus JuriquillaQuerétaroMexico

Personalised recommendations