Skip to main content

Advertisement

Log in

Function of Nanos1 gene in the development of reproductive organs of Schistosoma japonicum

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Nanos is a necessary factor in the differentiation and migration of primordial germ cells. It is closely associated with the development of genitalia in a wide range of species. We questioned whether Nanos was involved in the reproductive organ development of Schistosoma japonicum. Firstly, by in situ hybridization, S. japonicum Nanos1 (SjNanos1) gene was expressed mainly in reproductive organs of S. japonicum. Then, the paired schistosome of 28 days post-infection (dpi) was transfected with SjNanos1 small interfering RNA three times and cultured in vitro for 10 days. SjNanos1 expression suppression in the mRNA and protein levels were confirmed compared to that of the controls. The morphological changes in reproductive organs and egg production were observed after SjNanos1 gene knockdown. The results observed by confocal laser scanning microscopy showed significant changes in the morphology of reproductive organs of parasites, especially the female ovaries, vitellarium, and the male testes, after RNAi. In addition, SjNanos1 silencing also induced the reduction of eggs, and affected the changes of reproduction-related genes, like Pumilio, CNOT6L, and Fs800. Therefore, our findings demonstrate that the SjNanos1 gene is essential in the development of reproductive organs and the egg production of S. japonicum.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Andrade ZA (2009) Schistosomiasis and liver fibrosis. Parasite Immunol 31(11):656–663

    Article  CAS  PubMed  Google Scholar 

  • Bartlam M, Yamamoto T (2010) The structural basis for deadenylation by the CCR4-NOT complex. Protein Cell 1(5):443–452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Basch PF (1981) Cultivation of Schistosoma mansoni in vitro. I. Establishment of cultures from cercariae and development until pairing. J Parasitol 67(2):179–185

    Article  CAS  PubMed  Google Scholar 

  • Beckmann S, Grevelding CG (2010) Imatinib has a fatal impact on morphology, pairing stability and survival of adult Schistosoma mansoni in vitro. Int J Parasitol 40(5):521–526

    Article  CAS  PubMed  Google Scholar 

  • Beckmann S, Quack T, Burmeister C, Buro C, Long T, Dissous C, Grevelding CG (2010) Schistosoma mansoni: signal transduction processes during the development of the reproductive organs. Parasitology 137(3):497–520

    Article  CAS  PubMed  Google Scholar 

  • Berthet C, Morera AM, Asensio MJ, Chauvin MA, Morel AP, Dijoud F, Magaud JP, Durand P, Rouault JP (2004) CCR4-associated factor CAF1 is an essential factor for spermatogenesis. Mol Cell Biol 24(13):5808–5820

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cheng GF, Lin JJ, Feng XG, Fu ZQ, Jin YM, Yuan CX, Zhou YC, Cai YM (2005) Proteomic analysis of differentially expressed proteins between the male and female worm of Schistosoma japonicum after pairing. Proteomics 5(2):511–521

    Article  CAS  PubMed  Google Scholar 

  • Chuah C, Jones MK, Burke ML, McManus DP, Gobert GN (2014) Cellular and chemokine-mediated regulation in schistosome-induced hepatic pathology. Trends Parasitol 30(3):141–150

    Article  CAS  PubMed  Google Scholar 

  • Cogswell AA, Collins JJ 3rd, Newmark PA, Williams DL (2011) Whole mount in situ hybridization methodology for Schistosoma mansoni. Mol Biochem Parasitol 178(1–2):46–50

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Collins JJ 3rd, Wang B, Lambrus BG, Tharp ME, Iyer H, Newmark PA (2013) Adult somatic stem cells in the human parasite Schistosoma mansoni. Nature 494(7438):476–479

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dahanukar A, Wharton RP (1996) The Nanos gradient in Drosophila embryos is generated by translational regulation. Genes Dev 10(20):2610–2620

    Article  CAS  PubMed  Google Scholar 

  • deWalick S, Tielens AG, van Hellemond JJ (2012) Schistosoma mansoni: the egg, biosynthesis of the shell and interaction with the host. Exp Parasitol 132(1):7–13

    Article  CAS  PubMed  Google Scholar 

  • Diao YJ, Hua MQ, Shao YJ, Huang W, Liu M, Ren CP, Ji YS, Chen JM, Shen JJ (2015) Preliminary characterization and expression of vasa-like gene in Schistosoma japonicum. Parasitol Res 114(7):2679–2687

    Article  PubMed  Google Scholar 

  • Draper BW, McCallum CM, Moens CB (2007) Nanos1 is required to maintain oocyte production in adult zebrafish. Dev Biol 305(2):589–598

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fenwick A (2015) Praziquantel: do we need another antischistosoma treatment? Future Med Chem 7(6):677–680

    Article  PubMed  Google Scholar 

  • Fitzpatrick JM, Hoffmann KF (2006) Dioecious Schistosoma mansoni express divergent gene repertoires regulated by pairing. Int J Parasitol 36(10–11):1081–1089

    Article  CAS  PubMed  Google Scholar 

  • Hams E, Aviello G, Fallon PG (2013) The schistosoma granuloma: friend or foe? Front Immunol 4:89

    Article  PubMed  PubMed Central  Google Scholar 

  • Hotez PJ, Alvarado M, Basáñez MG et al (2014) The global burden of disease study 2010: interpretation and implications for the neglected tropical diseases. PLoS Negl Trop Dis 8(7):e2865

    Article  PubMed  PubMed Central  Google Scholar 

  • Hulstijn M, Barros LA, Neves RH, Moura EG, Machado-Silva JR (2003) Morphological changes in the reproductive organs of male and female Schistosoma mansoni worms caused by streptozotocin, a drug used to induce diabetes mellitus. Parasitology 126(Pt 1):53–61

    Article  CAS  PubMed  Google Scholar 

  • Hülskamp M, Schröder C, Pfeifle C, Jäckle H, Tautz D (1989) Posterior segmentation of the Drosophila embryo in the absence of a maternal posterior organizer gene. Nature 338(6217):629–632

    Article  PubMed  Google Scholar 

  • Kunz W (2001) Schistosome male-female interaction: induction of germ-cell differentiation. Trends Parasitol 17(5):227–231

    Article  CAS  PubMed  Google Scholar 

  • Lai F, Singh A, King ML (2012) Xenopus Nanos1 is required to prevent endoderm gene expression and apoptosis in primordial germ cells. Development 139(8):1476–1486

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu S, Cai P, Hou N, Piao X, Wang H, Hung T, Chen Q (2012) Genome-wide identification and characterization of a panel of house-keeping genes in Schistosoma japonicum. Mol Biochem Parasitol 182(1–2):75–82

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(−delta delta C(T)) method. Methods 25(4):402–408

    Article  CAS  PubMed  Google Scholar 

  • Lu Z, Quack T, Hahnel S et al (2015) Isolation, enrichment and primary characterisation of vitelline cells from Schistosoma mansoni obtained by the organ isolation method. Int J Parasitol 45(9–10):663–672

    Article  CAS  PubMed  Google Scholar 

  • McManus DP, Loukas A (2008) Current status of vaccines for schistosomiasis. Clin Microbiol Rev 21(1):225–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Milligan JN, Jolly ER (2012) Identification and characterization of a Mef2 transcriptional activator in schistosome parasites. PLoS Negl Trop Dis 6(1):e1443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray CJ, Barber RM, Foreman KJ et al (2015) Global, regional, and national disability-adjusted life years (DALYs) for 306 diseases and injuries and healthy life expectancy (HALE) for 188 countries, 1990–2013: quantifying the epidemiological transition. Lancet 386(10009):2145–2191

    Article  PubMed  Google Scholar 

  • Oulhen N, Wessel GM (2016) Differential Nanos 2 protein stability results in selective germ cell accumulation in the sea urchin. Dev Biol 418(1):146–156

    Article  CAS  PubMed  Google Scholar 

  • Oulhen N, Wessel GM (2014) Every which way—nanos gene regulation in echinoderms. Genesis 52(3):279–286

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Popiel I, Basch PF (1984) Reproductive development of female Schistosoma mansoni (Digenea: Schistosomatidae) following bisexual pairing of worms and worm segments. J Exp Zool 232(1):141–150

    Article  CAS  PubMed  Google Scholar 

  • Reis MG, Kuhns J, Blanton R, Davis AH (1989) Localization and pattern of expression of a female specific mRNA in Schistosoma mansoni. Mol Biochem Parasitol 32(2–3):113–119

    Article  CAS  PubMed  Google Scholar 

  • Schmitt-Engel C, Cerny AC, Schoppmeier M (2012) A dual role for nanos and pumilio in anterior and posterior blastodermal patterning of the short-germ beetle Tribolium castaneum. Dev Biol 364(2):224–235

    Article  CAS  PubMed  Google Scholar 

  • Subramaniam K, Seydoux G (1999) Nos-1 and Nos-2, two genes related to Drosophila nanos, regulate primordial germ cell development and survival in Caenorhabditis elegans. Development 126(21):4861–4871

    CAS  PubMed  Google Scholar 

  • Vanderstraete M, Gouignard N, Cailliau K, Morel M, Lancelot J, Bodart JF, Dissous C (2013) Dual targeting of insulin and venus kinase receptors of Schistosoma mansoni for novel anti-schistosome therapy. PLoS Negl Trop Dis 7(5):e2226

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang B, Collins JJ 3rd, Newmark PA (2013) Functional genomic characterization of neoblast-like stem cells in larval Schistosoma mansoni. elife 2:e00768

    PubMed  PubMed Central  Google Scholar 

  • Wang C, Dickinson LK, Lehmann R (1994) Genetics of nanos localization in Drosophila. Dev Dyn 199(2):103–115

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Jin Y, Liu P, Shi Y, Cao Y, Liu J, Shi Y, Li H, Lin J (2012) RNAi silencing of type V collagen in Schistosoma japonicum affects parasite morphology, spawning, and hatching. Parasitol Res 111(3):1251–1257

    Article  PubMed  Google Scholar 

  • Ye B, Petritsch C, Clark IE, Gavis ER, Jan LY, Jan YN (2004) Nanos and Pumilio are essential for dendrite morphogenesis in Drosophila peripheral neurons. Curr Biol 14(4):314–321

    Article  CAS  PubMed  Google Scholar 

  • Zhao G, Chen K, Yao Q, Wang W, Wang Y, Mu R, Chen H, Yang H, Zhou H (2008) The nanos gene of Bombyx mori and its expression patterns in developmental embryos and larvae tissues. Gene Expr Patterns 8(4):254–260

    Article  CAS  PubMed  Google Scholar 

  • Ziros PG, Chartoumpekis DV, Sykiotis GP (2016) A simple protocol for high efficiency protein isolation after RNA isolation from mouse thyroid and other very small tissue Samples. Methods Mol Biol 1449:383–393

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of China (81271865), Key University Science Research Project of Anhui Province of China (KJ2016A333) and Scientific Research of BSKY from Anhui Medical University (XJ201321). We thank Dr. Adams Latif (a native English speaker, Anhui Medical University Laboratory of Microbiology) for modifying the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Miao Liu or Jijia Shen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Q., Zhu, L., Liu, F. et al. Function of Nanos1 gene in the development of reproductive organs of Schistosoma japonicum . Parasitol Res 116, 1505–1513 (2017). https://doi.org/10.1007/s00436-017-5427-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-017-5427-9

Keywords

Navigation