Advertisement

Parasitology Research

, Volume 116, Issue 1, pp 359–370 | Cite as

Induction of specific humoral immune response in mice immunized with ROP18 nanospheres from Toxoplasma gondii

  • Habibun Nabi
  • Imran RashidEmail author
  • Nisar Ahmad
  • Aneela Durrani
  • Haroon Akbar
  • Saher Islam
  • Amna Arshad Bajwa
  • Wasim Shehzad
  • Kamran Ashraf
  • Nyla Imran
Original Paper

Abstract

Toxoplasmosis is one of the most common zoonotic protozoal diseases. Recent advances in biotechnology have produced recombinant protein, which are immunogenic, and progress in nano-pharmaceutics has generated encapsulated protein in nanospheres, which are suitable for vaccine delivery. DNA was extracted from Toxoplasma gondii oocysts and was confirmed through nested PCR and sequencing. The 1665 bp of ROP18 was cloned into the easy vector system: pGEM-T by the T-A cloning method. DH5α bacteria were transfected with pGEM-ROP18. ROP18 was subcloned from pGEM-ROP18 into pET28-ROP18. BL21 bacteria were transfected with pET28-ROP18. Thus, rROP18 protein was expressed in BL21 bacteria by induction at different concentrations of isopropyl β-D-1-thiogalactopyranoside. Protein expression was confirmed through SDS-PAGE and Western blotting. The immunoblot of rROP18 was recognized by anti-HIS antibodies and sera from infected mice at 67 kDa. Recombinant ROP18 protein was encapsulated in nanoparticles with PLGA and was characterized through scanning electron microscopy. Intraperitoneal immunizations with rROP18 protein and intranasal immunization of nanospheres were carried out in mice, and the immune response was detected by ELISA. Results showed that rROP18 in nanospheres administered intra-nasally elicited elevated responses of specific IgA and IgG2a as compared to groups inoculated intra-nasally with rROP18 alone, or injected subcutaneously with rROP18 in montanide adjuvant. It was concluded that nanospheres of ROP18 would be a non-invasive approach to develop vaccination against T. gondii. Further experiments are needed to determine the cellular response to these nanospheres in a mouse model for chronic toxoplasmosis.

Keywords

Toxoplasma gondii ROP18 Cloning and expression Nanoparticles Humoral response Mucosal response 

Notes

Acknowledgments

This study was funded by Grand Challenges Canada (Grant # S4_0266-01). We thank Dr. David S. Lindsay, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, Virginia, USA, for suggestions on the manuscript. We thank Mr. Abdullah Jan for characterization of our nanoparticles at Centralized Resource Laboratory, University of Peshawar.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akagi T, Baba M, Akashi M (2012) Biodegradable Nanoparticles as Vaccine Adjuvants and Delivery Systems: Regulation of Immune Responses by Nanoparticle-Based Vaccine, In:  Kunugi, S., Yamaoka, T. (Eds.) Polymers in Nanomedicine. Springer Berlin Heidelberg, Berlin, Heidelberg, pp. 31–64Google Scholar
  2. Alfonso Y, Fraga J, Jimenez N, Fonseca C, Dorta-Contreras AJ, Cox R, Capo V, Bandera F, Pomier O, Ginorio D (2009) Detection of Toxoplasma gondii in cerebrospinal fluid from AIDS patients by nested PCR and rapid identification of type I allele at B1 gene by RFLP analysis. Exp Parasitol 122:203–207CrossRefPubMedGoogle Scholar
  3. Amidi M, Romeijn SG, Verhoef JC, Junginger HE, Bungener L, Huckriede A, Crommelin DJ, Jiskoot W (2007) N-trimethyl chitosan (TMC) nanoparticles loaded with influenza subunit antigen for intranasal vaccination: biological properties and immunogenicity in a mouse model. Vaccine 25:144–153CrossRefPubMedGoogle Scholar
  4. Azegami T, Yuki Y, Kiyono H (2014) Challenges in mucosal vaccines for the control of infectious diseases. Int Immunol 26:517–528Google Scholar
  5. Bala I, Hariharan S, Kumar MR (2004) PLGA nanoparticles in drug delivery: the state of the art. Crit Rev Ther Drug Carrier Syst 21:5CrossRefGoogle Scholar
  6. Bradley PJ, Ward C, Cheng SJ, Alexander DL, Coller S, Coombs GH, Dunn JD, Ferguson DJ, Sanderson SJ, Wastling JM, Boothroyd JC (2005) Proteomic analysis of rhoptry organelles reveals many novel constituents for host-parasite interactions in Toxoplasma gondii. J Biol Chem 280:34245–34258CrossRefPubMedGoogle Scholar
  7. Burg JL, Grover CM, Pouletty P, Boothroyd JC (1989) Direct and sensitive detection of a pathogenic protozoan, Toxoplasma gondii, by polymerase chain reaction. J Clin Microbiol 27:1787–1792PubMedPubMedCentralGoogle Scholar
  8. Capretti MG, De Angelis M, Tridapalli E, Orlandi A, Marangoni A, Moroni A, Guerra B, Arcuri S, Marsico C, Faldella G (2014) Toxoplasmosis in pregnancy in an area with low seroprevalence: is prenatal screening still worthwhile? Pediatr Infect Dis J 33:5–10CrossRefPubMedGoogle Scholar
  9. Chen S, Songkumarn P, Liu J, Wang G-L (2009) A versatile zero background T-vector system for gene cloning and functional genomics. Plant Physiol 150:1111–1121CrossRefPubMedPubMedCentralGoogle Scholar
  10. Danhier F, Ansorena E, Silva JM, Coco R, Le Breton A, Préat V (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Control Release 161:505–522CrossRefPubMedGoogle Scholar
  11. Debard N, Buzoni-Gatel D, Bout D (1996) Intranasal immunization with SAG1 protein of Toxoplasma gondii in association with cholera toxin dramatically reduces development of cerebral cysts after oral infection. Infect Immun 64:2158–2166PubMedPubMedCentralGoogle Scholar
  12. Debin A, Kravtzoff R, Santiago JV, Cazales L, Sperandio S, Melber K, Janowicz Z, Betbeder D, Moynier M (2002) Intranasal immunization with recombinant antigens associated with new cationic particles induces strong mucosal as well as systemic antibody and CTL responses. Vaccine 20:2752–2763CrossRefPubMedGoogle Scholar
  13. Dimier-Poisson I, Carpentier R, N’Guyen TTL, Dahmani F, Ducournau C, Betbeder D (2015) Porous nanoparticles as delivery system of complex antigens for an effective vaccine against acute and chronic Toxoplasma gondii infection. Biomaterials 50:164–175CrossRefPubMedGoogle Scholar
  14. El Hajj H, Demey E, Poncet J, Lebrun M, Wu B, Galeotti N, Fourmaux MN, Mercereau-Puijalon O, Vial H, Labesse G, Dubremetz JF (2006) The ROP2 family of Toxoplasma gondii rhoptry proteins: proteomic and genomic characterization and molecular modeling. Proteomics 6:5773–5784CrossRefPubMedGoogle Scholar
  15. El Hajj H, Lebrun M, Arold ST, Vial H, Labesse G, Dubremetz JF (2007) ROP18 is a rhoptry kinase controlling the intracellular proliferation of Toxoplasma gondii. PLoS Pathog 3:e14CrossRefPubMedPubMedCentralGoogle Scholar
  16. Elson CO, Ealding W (1984) Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J Immunol 132:2736–2741PubMedGoogle Scholar
  17. Fentress SJ, Behnke MS, Dunay IR, Mashayekhi M, Rommereim LM, Fox BA, Bzik DJ, Taylor GA, Turk BE, Lichti CF, Townsend RR, Qiu W, Hui R, Beatty WL, Sibley LD (2010) Phosphorylation of immunity-related GTPases by a Toxoplasma gondii-secreted kinase promotes macrophage survival and virulence. Cell Host Microbe 8:484–495CrossRefPubMedPubMedCentralGoogle Scholar
  18. Gostel MR, Weeks A (2014) Development of novel, Exon-Primed Intron-Crossing (EPIC) markers from EST databases and evaluation of their phylogenetic utility in Commiphora (Burseraceae). Appl Plant Sci 2:4CrossRefGoogle Scholar
  19. Grigg ME, Boothroyd JC (2001) Rapid identification of virulent type I strains of the protozoan pathogen Toxoplasma gondii by PCR-restriction fragment length polymorphism analysis at the B1 gene. J Clin Microbiol 39:398–400CrossRefPubMedPubMedCentralGoogle Scholar
  20. Grzybowski MM, Dziadek B, Dziadek J, Gatkowska J, Dzitko K, Dlugonska H (2015a) Toxoplasma gondii: cloning, expression and immunoreactivity of recombinant ROP5 and ROP18 antigens. Exp Parasitol 150:1–6CrossRefPubMedGoogle Scholar
  21. Grzybowski MM, Dziadek B, Gatkowska JM, Dzitko K, Dlugonska H (2015b) Towards vaccine against toxoplasmosis: evaluation of the immunogenic and protective activity of recombinant ROP5 and ROP18 Toxoplasma gondii proteins. Parasitol Res 114:4553–4563CrossRefPubMedGoogle Scholar
  22. Hamdy S, Elamanchili P, Alshamsan A, Molavi O, Satou T, Samuel J (2007) Enhanced antigen‐specific primary CD4+ and CD8+ responses by codelivery of ovalbumin and toll‐like receptor ligand monophosphoryl lipid A in poly (D, L‐lactic‐co‐glycolic acid) nanoparticles. J Biomed Mater Res A 81:652–662CrossRefPubMedGoogle Scholar
  23. Hiszczynska-Sawicka E, Gatkowska JM, Grzybowski MM, Dlugonska H (2014) Veterinary vaccines against toxoplasmosis. Parasitol 141:1365–1378CrossRefGoogle Scholar
  24. Illum L (2002) Nasal drug delivery: new developments and strategies. Drug Discov Today 7:1184–1189CrossRefPubMedGoogle Scholar
  25. Jain RA (2000) The manufacturing techniques of various drug loaded biodegradable poly (lactide-co-glycolide)(PLGA) devices. Biomaterials 21:2475–2490CrossRefPubMedGoogle Scholar
  26. Jain S, O’Hagan DT, Singh M (2011) The long-term potential of biodegradable poly (lactideco-glycolide) microparticles as the next-generation vaccine adjuvant. Expert Rev Vaccines 10:1731–1742CrossRefPubMedGoogle Scholar
  27. Jones CD, Okhravi N, Adamson P, Tasker S, Lightman S (2000) Comparison of PCR detection methods for B1, P30, and 18S rDNA genes of T. gondii in aqueous humor. Invest Ophthalmol Vis Sci 41:634–644PubMedGoogle Scholar
  28. Jung T, Kamm W, Breitenbach A, Kaiserling E, Xiao J, Kissel T (2000) Biodegradable nanoparticles for oral delivery of peptides: is there a role for polymers to affect mucosal uptake? Eur J Pharm Biopharm 50:147–160CrossRefPubMedGoogle Scholar
  29. Kavanagh OV, Adair BM, Welsh M, Earley B (2013) Immunogenetic responses in calves to intranasal delivery of bovine respiratory syncytial virus (BRSV) epitopes encapsulated in poly (DL-lactide-co-glycolide) microparticles. Res Vet Sci 95:786–793CrossRefPubMedGoogle Scholar
  30. Kearse M, Moir R, Wilson A, Stones-Havas S, Cheung M, Sturrock S, Buxton S, Cooper A, Markowitz S, Duran C, Thierer T, Ashton B, Meintjes P, Drummond A (2012) Geneious Basic: an integrated and extendable desktop software platform for the organization and analysis of sequence data. Bioinformatics 28:1647–1649CrossRefPubMedPubMedCentralGoogle Scholar
  31. Khaminets A, Hunn JP, Konen-Waisman S, Zhao YO, Preukschat D, Coers J, Boyle JP, Ong YC, Boothroyd JC, Reichmann G, Howard JC (2010) Coordinated loading of IRG resistance GTPases on to the Toxoplasma gondii parasitophorous vacuole. Cell Microbiol 12:939–961CrossRefPubMedPubMedCentralGoogle Scholar
  32. Kibbe WA (2007) OligoCalc: an online oligonucleotide properties calculator. Nucleic Acids Res 35:W43–W46CrossRefPubMedPubMedCentralGoogle Scholar
  33. Klose D, Siepmann F, Elkharraz K, Krenzlin S, Siepmann J (2006) How porosity and size affect the drug release mechanisms from PLGA-based microparticles. Int J Pharm 314:198–206CrossRefPubMedGoogle Scholar
  34. Kothari H, Kumar P, Singh N (2006) Prokaryotic expression, purification, and polyclonal antibody production against a novel drug resistance gene of Leishmania donovani clinical isolate. Protein Expr Purif 45:15–21CrossRefPubMedGoogle Scholar
  35. Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685CrossRefPubMedGoogle Scholar
  36. Lee JY, Lee SE, Lee EG, Song KH (2008) Nested PCR-based detection of Toxoplasma gondii in German shepherd dogs and stray cats in South Korea. Res Vet Sci 85:125–127CrossRefPubMedGoogle Scholar
  37. Li XZ, Wang XH, Xia LJ, Weng YB, Hernandez JA, Tu LQ, Li LT, Li SJ, Yuan ZG (2015) Protective efficacy of recombinant canine adenovirus type-2 expressing TgROP18 (CAV-2-ROP18) against acute and chronic Toxoplasma gondii infection in mice. BMC Infect Dis 15:114CrossRefPubMedPubMedCentralGoogle Scholar
  38. Lycke N, Holmgren J (1986) Strong adjuvant properties of cholera toxin on gut mucosal immune responses to orally presented antigens. Immunol 59:301Google Scholar
  39. Makadia HK, Siegel SJ (2011) Poly lactic-co-glycolic acid (PLGA) as biodegradable controlled drug delivery carrier. Polymers 3:1377–1397CrossRefPubMedPubMedCentralGoogle Scholar
  40. Manish M, Rahi A, Kaur M, Bhatnagar R, Singh S (2013) A single-dose PLGA encapsulated protective antigen domain 4 nanoformulation protects mice against Bacillus anthracis spore challenge. PLoS One 8:e61885CrossRefPubMedPubMedCentralGoogle Scholar
  41. Mansoor F, Earley B, Cassidy JP, Markey B, Foster C, Doherty S, Welsh MD (2014) Intranasal delivery of nanoparticles encapsulating BPI3V proteins induces an early humoral immune response in mice. Res Vet Sci 96:551–557CrossRefPubMedGoogle Scholar
  42. Mansoor F, Earley B, Cassidy JP, Markey B, Doherty S, Welsh MD (2015) Comparing the immune response to a novel intranasal nanoparticle PLGA vaccine and a commercial BPI3V vaccine in dairy calves. BMC Vet Res 11:220CrossRefPubMedPubMedCentralGoogle Scholar
  43. Mitragotri S (2005) Immunization without needles. Nat Rev Immunol 5:905–916CrossRefPubMedGoogle Scholar
  44. Newman KD, Elamanchili P, Kwon GS, Samuel J (2002) Uptake of poly (D, L‐lactic‐co‐glycolic acid) microspheres by antigen‐presenting cells in vivo. J Biomed Mater Res 60:480–486CrossRefPubMedGoogle Scholar
  45. Owczarzy R, Tataurov AV, Wu Y, Manthey JA, McQuisten KA, Almabrazi HG, Pedersen KF, Lin Y, Garretson J, McEntaggart NO (2008) IDT SciTools: a suite for analysis and design of nucleic acid oligomers. Nucleic Acids Res 36:W163–W169CrossRefPubMedPubMedCentralGoogle Scholar
  46. Pan L, Zhang Z, Lv J, Zhou P, Hu W, Fang Y, Chen H, Liu X, Shao J, Zhao F (2014) Induction of mucosal immune responses and protection of cattle against direct-contact challenge by intranasal delivery with foot-and-mouth disease virus antigen mediated by nanoparticles. Int J Nanomedicine 9:5603CrossRefPubMedPubMedCentralGoogle Scholar
  47. Peixoto L, Chen F, Harb OS, Davis PH, Beiting DP, Brownback CS, Ouloguem D, Roos DS (2010) Integrative genomic approaches highlight a family of parasite-specific kinases that regulate host responses. Cell Host Microbe 8:208–218CrossRefPubMedPubMedCentralGoogle Scholar
  48. Pohlmann AR, Fonseca FN, Paese K, Detoni CB, Coradini K, Beck RC, Guterres SS (2013) Poly (ε-caprolactone) microcapsules and nanocapsules in drug delivery. Expert Opin Drug Deliv 10:623–638CrossRefPubMedGoogle Scholar
  49. Prieto M, Bacigalupe D, Pardini O, Amalvy J, Venturini C, Morilla M, Romero E (2006) Nanomolar cationic dendrimeric sulfadiazine as potential antitoxoplasmic agent. Int J Pharm 326:160–168CrossRefPubMedGoogle Scholar
  50. Qu D, Han J, Du A (2013a) Enhancement of protective immune response to recombinant Toxoplasma gondii ROP18 antigen by ginsenoside Re. Exp Parasitol 135:234–239CrossRefPubMedGoogle Scholar
  51. Qu D, Han J, Du A (2013b) Evaluation of protective effect of multiantigenic DNA vaccine encoding MIC3 and ROP18 antigen segments of Toxoplasma gondii in mice. Parasitol Res 112:2593–2599CrossRefPubMedGoogle Scholar
  52. Rashid I, Hedhli D, Moire N, Pierre J, Debierre-Grockiego F, Dimier-Poisson I, Mevelec MN (2011) Immunological responses induced by a DNA vaccine expressing RON4 and by immunogenic recombinant protein RON4 failed to protect mice against chronic toxoplasmosis. Vaccine 29:8838–8846CrossRefPubMedGoogle Scholar
  53. Roberts RJ, Murray K (1976) Restriction endonuclease. CRC Crit Rev Biochem 4:123–164CrossRefPubMedGoogle Scholar
  54. Saeij JP, Boyle JP, Coller S, Taylor S, Sibley LD, Brooke-Powell ET, Ajioka JW, Boothroyd JC (2006) Polymorphic secreted kinases are key virulence factors in toxoplasmosis. Science 314:1780–1783CrossRefPubMedPubMedCentralGoogle Scholar
  55. Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning, vol 1. Cold spring harbor laboratory press, New YorkGoogle Scholar
  56. Sayers EW, Barrett T, Benson DA, Bolton E, Bryant SH, Canese K, Chetvernin V, Church DM, DiCuccio M, Federhen S (2011) Database resources of the national center for biotechnology information. Nucleic Acids Res 39:D38–D51CrossRefPubMedGoogle Scholar
  57. Shin HG, Lee SE, Hong SH, Kim SM, Choi YK, Park HJ, Seo KW, Song KH (2013) Prevalence of Toxoplasma gondii infection in rabbits of Korea by serological tests and nested polymerase chain reaction. J Vet Med Sci 75:1609–1613CrossRefPubMedPubMedCentralGoogle Scholar
  58. Silva R, Langoni H (2009) Toxoplasma gondii: host–parasite interaction and behavior manipulation. Parasitol Res 105:893–898CrossRefPubMedGoogle Scholar
  59. Singh M, T O’Hagan D (2003) Recent advances in veterinary vaccine adjuvants. Int J Parasitol 33:469–478CrossRefPubMedGoogle Scholar
  60. Sinha V, Trehan A (2003) Biodegradable microspheres for protein delivery. J Control Release 90:261–280CrossRefPubMedGoogle Scholar
  61. Slütter B, Bal S, Keijzer C, Mallants R, Hagenaars N, Que I, Kaijzel E, van Eden W, Augustijns P, Löwik C (2010) Nasal vaccination with N-trimethyl chitosan and PLGA based nanoparticles: nanoparticle characteristics determine quality and strength of the antibody response in mice against the encapsulated antigen. Vaccine 28:6282–6291CrossRefPubMedGoogle Scholar
  62. Stanley AC, Buxton D, Innes EA, Huntley JF (2004) Intranasal immunisation with Toxoplasma gondii tachyzoite antigen encapsulated into PLG microspheres induces humoral and cell-mediated immunity in sheep. Vaccine 22:3929–3941CrossRefPubMedGoogle Scholar
  63. T O’Hagan D, Singh M, Gupta RK (1998) Poly (lactide-co-glycolide) microparticles for the development of single-dose controlled-release vaccines. Adv Drug Deliv Rev 32:225–246CrossRefGoogle Scholar
  64. Taha MA, Singh SR, Dennis VA (2012) Biodegradable PLGA85/15 nanoparticles as a delivery vehicle for Chlamydia trachomatis recombinant MOMP-187 peptide. Nanotechnol 23:325101CrossRefGoogle Scholar
  65. Taylor S, Barragan A, Su C, Fux B, Fentress SJ, Tang K, Beatty WL, Hajj HE, Jerome M, Behnke MS, White M, Wootton JC, Sibley LD (2006) A secreted serine-threonine kinase determines virulence in the eukaryotic pathogen Toxoplasma gondii. Science 314:1776–1780CrossRefPubMedGoogle Scholar
  66. Thomas C, Rawat A, Hope-Weeks L, Ahsan F (2011) Aerosolized PLA and PLGA nanoparticles enhance humoral, mucosal and cytokine responses to hepatitis B vaccine. Mol Pharm 8:405–415CrossRefPubMedGoogle Scholar
  67. Tonkin ML, Halavaty AS, Ramaswamy R, Ruan J, Igarashi M, Ngo HM, Boulanger MJ (2015) Structural and functional divergence of the aldolase fold in Toxoplasma gondii. J Mol Biol 427:840–852CrossRefPubMedGoogle Scholar
  68. Uysal A, Cuce M, Taner CE, Uysal F, Atalay S, Gol B, Kose S (2013) Prevalence of congenital toxoplasmosis among a series of Turkish women. Rev Med Chil 141:471–476PubMedGoogle Scholar
  69. Vado-Solis IA, Suarez-Solis V, Jimenez-Delgadillo B, Zavala-Velazquez JE, Segura-Correa JC (2013) Toxoplasma gondii presence in women with spontaneous abortion in Yucatan, Mexico. J Parasitol 99:383–385CrossRefPubMedGoogle Scholar
  70. Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31:3688–3691CrossRefPubMedPubMedCentralGoogle Scholar
  71. Wallon M, Peyron F, Cornu C, Vinault S, Abrahamowicz M, Kopp CB, Binquet C (2013) Congenital toxoplasma infection: monthly prenatal screening decreases transmission rate and improves clinical outcome at age 3 years. Clin Infect Dis 56:1223–1231CrossRefPubMedGoogle Scholar
  72. Wang G, Pan L, Zhang Y, Wang Y, Zhang Z, Lü J, Zhou P, Fang Y, Jiang S (2011) Intranasal delivery of cationic PLGA nano/microparticles-loaded FMDV DNA vaccine encoding IL-6 elicited protective immunity against FMDV challenge. PLoS One 6:e27605CrossRefPubMedPubMedCentralGoogle Scholar
  73. Xu Y, Zhang N-Z, Wang M, Dong H, Feng S-Y, Guo H-C, Zhu X-Q (2015) A long-lasting protective immunity against chronic toxoplasmosis in mice induced by recombinant rhoptry proteins encapsulated in poly (lactide-co-glycolide) microparticles. Parasitol Res 114:4195–4203CrossRefPubMedGoogle Scholar
  74. Yamamoto M, Ma JS, Mueller C, Kamiyama N, Saiga H, Kubo E, Kimura T, Okamoto T, Okuyama M, Kayama H, Nagamune K, Takashima S, Matsuura Y, Soldati-Favre D, Takeda K (2011) ATF6beta is a host cellular target of the Toxoplasma gondii virulence factor ROP18. J Exp Med 208:1533–1546CrossRefPubMedPubMedCentralGoogle Scholar
  75. Yuan ZG, Zhang XX, Lin RQ, Petersen E, He S, Yu M, He XH, Zhou DH, He Y, Li HX, Liao M, Zhu XQ (2011) Protective effect against toxoplasmosis in mice induced by DNA immunization with gene encoding Toxoplasma gondii ROP18. Vaccine 29:6614–6619CrossRefPubMedGoogle Scholar
  76. Zhang N-Z, Xu Y, Wang M, Chen J, Huang S-Y, Gao Q, Zhu X-Q (2016) Vaccination with Toxoplasma gondii calcium-dependent protein kinase 6 and rhoptry protein 18 encapsulated in poly (lactide-co-glycolide) microspheres induces long-term protective immunity in mice. BMC Infect Dis 16:1CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of ParasitologyUniversity of Veterinary and Animal SciencesLahorePakistan
  2. 2.Department of Clinical Medicine and SurgeryUniversity of Veterinary and Animal SciencesLahorePakistan
  3. 3.Institute of Biochemistry and BiotechnologyUniversity of Veterinary and Animal SciencesLahorePakistan
  4. 4.Government Degree College for Women, FerozewalaSheikhupuraPakistan

Personalised recommendations