Parasitology Research

, Volume 116, Issue 1, pp 327–334 | Cite as

The first data on the vitellogenesis of paruterinid tapeworms: an ultrastructural study of Dictyterina cholodkowskii (Cestoda: Cyclophyllidea)

  • Aneta Yoneva
  • Roman Kuchta
  • Jean Mariaux
  • Boyko B. Georgiev
Original Paper

Abstract

The present study provides the first ultrastructural data of the vitellogenesis in a cestode species of the cyclophyllidean family Paruterinidae, aiming to expand the limited data on the vitellogenesis in cyclophyllidean cestodes and to explore the potential of ultrastructural characters associated with vitellogenesis for phylogenetic and taxonomic studies of this order. The process of vitellocyte formation in Dictyterina cholodkowskii follows the general pattern observed in other tapeworms but exhibits several specific differences in the ultrastructure of vitelline cells. The vitellarium contains vitellocytes at various stages of maturation. The periphery of the vitellarium and the space between maturing vitellocytes are occupied by interstitial cells. Differentiation into mature vitellocytes is characterized by high secretory activity, which involves the development of granular endoplasmic reticulum, Golgi complexes, mitochondria and vitelline globules of various sizes. During vitellogenesis, the progressive fusion of these globules results in the formation of two large membrane-limited vitelline vesicles that eventually fuse into a single large vesicle. Mature vitellocytes are composed of a single vitelline vesicle, a high content of cytoplasmic organelles and have no nucleus. No traces of lipid droplets and glycogen granules are detected in the cytoplasm of mature vitellocytes, which might be related to biological peculiarities of this family, i.e. the release of eggs into environment within the tissues of the paruterine organ, which may serve as a source of nutrients for embryos.

Keywords

Ultrastructure Vitellocytes Vitelline vesicles Cestode Cyclophyllidean Dictyterina cholodkowskii 

References

  1. Bruňanská M, Drobniková P, Mackiewicz JS, Nebesářová J (2013) Cytocomposition of the vitellarium in Khawia sinensis Hsü, 1935 (Cestoda, Caryophyllidea, Lytocestidae): another caryophyllidean species with lamellar bodies and lipids. Parasitol Res 112:2703–2711CrossRefPubMedGoogle Scholar
  2. Caira JN, Littlewood DTJ (2013) Worms, Platyhelminthes. In: Levine SA (ed) Encyclopedia of biodiversity, 2nd edn. Elsevier, San Diego, pp 437–469CrossRefGoogle Scholar
  3. Conn DB (1985) Fine structure of the embryonic envelopes of Oochoristica anolis (Cestoda: Linstowiidae). Z Parasitenkd 71:639–648CrossRefGoogle Scholar
  4. Conn DB (1988) The role of cellular parenchyma and extracellular matrix in the histogenesis of the paruterine organ of Mesocestoides lineatus (Platyhelminthes: Cestoda). J Morphol 197:303–314CrossRefGoogle Scholar
  5. Conn DB (1999) Ultrastructure of embryonic envelopes and associated maternal structures of Distoichometra bufonis (Platyhelminthes, Cestoda, Nematotaeniidae). Acta Parasitol 44:4–10Google Scholar
  6. Georgiev BB (2003) Cestoda (Tapeworms). In: Thoney DA, Schlager N (eds) Grzimek’s animal life encyclopedia, 2nd edn. Vol 1, Lower metazoans and lesser deuterostomes. Detroit et al., Gale, pp 225–243Google Scholar
  7. Georgiev BB, Kornyushin VV (1994) Family Paruterinidae Fuhrmann, 1907 (sensu lato). In: Khalil LF, Jones A, Bray RA (eds) Keys to the cestode parasites of vertebrates. CAB International, Wallingford, pp 559–584Google Scholar
  8. Georgiev BB, Vasileva GP, Genov T (1995) Dictyterina cholodkowskii (Cyclophyllidea: Paruterinidae): morphology, synonymy and distribution. Folia Parasitol 42:55–60Google Scholar
  9. Hai-Yun L, Brennan GP, Halton DW (2003) Ultrastructure of vitellogenesis in cestode (Moniezia expansa) (Cestoda: Cyclophyllidea). Acta Zool Sin 49:256–261Google Scholar
  10. Hoberg EP, Mariaux J, Justine J-L, Brooks DR, Weekes PJ (1997) Phylogeny of the orders of the Eucestoda (Cercomeromorphae) based on comparative morphology: historical perspectives and a new working hypothesis. J Parasitol 83:1128–1147CrossRefPubMedGoogle Scholar
  11. Khalil LF, Jones A, Bray RA (1994) Keys to the cestode parasites of vertebrates. CAB International, Wallingford, p 768Google Scholar
  12. Korneva ZV (2005) Placental type interactions and evolutionary trends of development of uterus in cestodes. J Evol Biochem Physiol 41:552–560CrossRefGoogle Scholar
  13. Korneva JV, Kornienko SA, Jones MK (2012) Fine structure of the uteri in two hymenolepidid tapeworm Skrjabinacanthus diplocoronatus and Urocystis prolifer (Cestoda: Cyclophyllidea) parasitic in shrews that display different fecundity of the strobilae. Parasitol Res 111:1523–1530CrossRefPubMedGoogle Scholar
  14. Korneva JV, Kornienko SA, Jones MK (2016) Fine structure of uterus and non-functioning paruterine organ in Orthoskrjabinia junlanae (Cestoda, Cyclophyllidea). Parasitol Res 115:2449–2457CrossRefPubMedGoogle Scholar
  15. Mariaux J (1998) A molecular phylogeny of the Eucestoda. J Parasitol 84:114–124CrossRefPubMedGoogle Scholar
  16. Młocicki D, Świderski Z, Eira C, Miquel J (2005) An ultrastructural study on embryonic envelope formation in the anoplocephalid cestode Mosgovoyia ctenoides (Railliet, 1890), Beveridge, 1978. Parasitol Res 95:243–251CrossRefPubMedGoogle Scholar
  17. Phillips AJ, Mariaux J, Georgiev BB (2012) Cucolepis cincta gen. n. et sp. n. (Cestoda: Cyclophyllidea) from the squirrel cuckoo Piaya cayana Lesson (Aves: Cuculiformes) from Paraguay. Folia Parasitol 59:287–294CrossRefPubMedGoogle Scholar
  18. Reynolds ES (1963) The use of lead citrate at high pH as an electron-opaque stain in electron microscopy. J Cell Biol 17:208–212CrossRefPubMedPubMedCentralGoogle Scholar
  19. Rybicka K (1960) Glycogen distribution during the embryonic development of the cestode Diorchis ransomi Schultz, 1940. Exp Parasitol 10:268–273CrossRefGoogle Scholar
  20. Rybicka K (1966) Embryogenesis in cestodes. Adv Parasitol 20:759–767Google Scholar
  21. Smigunova NI (1991) On the life cycle of the cestode Lyruterina nigropunctata (Crety, 1890) Spasskaya et Spassky, 1971 (Cestoda, Idiogenidae). Izv Akad Nauk Kaz SSR 5:44–47 [In Russian]Google Scholar
  22. Świderski Z (1973) Vitellogenesis in the cestode Inermicapsifer madagascariensis (Davaine, 1870) Baer 1956. Proc 48th Ann Meet Am Soc Parasitol, Toronto, pp 40Google Scholar
  23. Świderski Z, Huggel H, Schönnenberger N (1970a) The role of the vitelline cell in the capsule formation during embryogenesis in Hymenolepis diminuta (Cestoda). Proc 7th Int Congr Electron Microsc, Grenoble, pp 669–670Google Scholar
  24. Świderski Z, Huggel H, Schönnenberger N (1970b) Comparative fine structure of vitelline cells in cyclophyllidean cestodes. Proc 7th Int Congr Electron Microsc, Grenoble, pp 825–826Google Scholar
  25. Świderski Z, Xylander WER (2000) Vitellocytes and vitellogenesis in cestodes in relation to embryonic development egg production and life cycles. Int J Parasitol 30:805–817CrossRefPubMedGoogle Scholar
  26. Świderski Z, Chomicz L, Grytner-Zięcina B, Tkach VV (2000) Electron microscope study on vitellogenesis in Catenotaenia pusilla (Goeze, 1782) (Cyclophyllidea, Catenotaeniidae). Acta Parasitol 45:83–88Google Scholar
  27. Świderski Z, Młocicki D, Eira C, Miquel J, Grytner-Zięcina B, Mackiewicz JS (2005) Vitellogenesis in Mosgovoyia ctenoides (Railliet, 1890) Beveridge, 1978 (Cyclophyllidea, Anoplocephalidae). Acta Parasitol 50:305–311Google Scholar
  28. Świderski Z, Gibson DI, Marigo AM, Delgado E, Torres J, Miquel J (2011) Ultrastructure and cytochemistry of the bothriocephalidean cestode Clestobothrium crassiceps (Rudolphi, 1819), a parasite of the teleostei fish Merluccius merluccius (L., 1758) (Gadiformes, Merlucciidae). Acta Parasitol 56:392–405Google Scholar
  29. Świderski Z, Miquel J, Marigo AM, Gibson DI (2012) Ultrastructure of vitellogenesis and vitellocytes in the trypanorhynch cestode Aporhynchus menezesi, a parasite of the velvet belly lanternshark Etmopterus spinax. C R Biol 335:573–584CrossRefPubMedGoogle Scholar
  30. Tkach VV, Świderski Z (1997) Late stages of egg maturation in the cestode Pseudhymenolepis redonica Joyeux et Baer, 1935 (Cyclophyllidea, Hymenolepididae), a parasite of shrews. Acta Parasitol 42:97–108Google Scholar
  31. Tkach VV, Świderski Z (1998) Differentiation and ultrastructure of the oncospheral envelopes in the hymenolepidid cestode Staphilocystoides stefanskii (Zarnowski, 1954). Acta Parasitol 43:222–231Google Scholar
  32. Waeschenbach A, Webster BL, Bray RA, Littlewood DTJ (2007) Added resolution among ordinal level relationships of tapeworms (Platyhelminthes: Cestoda) with complete small and large subunit nuclear ribosomal RNA genes. Mol Phylogenet Evol 45:311–325CrossRefPubMedGoogle Scholar
  33. Wardle RA, McLeod JA, Radinovsky S (1974) Advances in the zoology of tapeworms, 1950–1970. University of Minnesota Press, Minneapolis, p 300Google Scholar
  34. Xylander WER (1987) Ultrastructural studies on the reproductive system of Gyrocotylidea and Amphilinidea (Cestoda): II. Vitellarium, vitellocyte development and vitelloduct of Gyrocotyle urna. Zoomorphology 107:293–297CrossRefGoogle Scholar
  35. Xylander WER (1988) Ultrastructural studies on the reproductive system of Gyrocotylidea and Amphilinidea (Cestoda): I. Vitellarium, vitellocyte development and vitelloduct of Amphilina foliacea. Parasitol Res 74:363–370CrossRefGoogle Scholar
  36. Yoneva A, Kuchta R, Scholz T (2014) First study of vitellogenesis of the broad fish tapeworm Diphyllobothrium latum (Cestoda, Diphyllobothriidea), a human parasite with extreme fecundity. Parasitol Int 63:747–753CrossRefPubMedGoogle Scholar
  37. Yoneva A, Scholz T, Bruňanská M, Kuchta R (2015a) Vitellogenesis of diphyllobothriidean cestodes (Platyhelminthes). C R Biol 338:169–179CrossRefPubMedGoogle Scholar
  38. Yoneva A, Scholz T, Młocicki D, Kuchta R (2015b) Ultrastructural study of vitellogenesis of Ligula intestinalis (Diphyllobothriidea) reveals the presence of cytoplasmic-like cell death in cestodes. Front Zool 12:35CrossRefPubMedPubMedCentralGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Aneta Yoneva
    • 1
    • 2
  • Roman Kuchta
    • 2
  • Jean Mariaux
    • 3
    • 4
  • Boyko B. Georgiev
    • 1
  1. 1.Institute of Biodiversity and Ecosystem ResearchBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of ParasitologyBiology Centre of the Czech Academy of SciencesČeské BudějoviceCzech Republic
  3. 3.Natural History Museum of GenevaGeneva 6Switzerland
  4. 4.Department of Genetics and EvolutionUniversity of GenevaGenevaSwitzerland

Personalised recommendations