Parasitology Research

, Volume 116, Issue 1, pp 155–165 | Cite as

Coexistence of free-living amoebae and bacteria in selected South African hospital water distribution systems

  • P. Muchesa
  • M. Leifels
  • L. Jurzik
  • K. B. Hoorzook
  • T. G. Barnard
  • C. Bartie
Original Paper

Abstract

Pathogenic free-living amoebae (FLA), such as Naegleria fowleri, Balamuthia mandrillaris and Acanthamoeba species isolated from aquatic environments have been implicated in central nervous system, eye and skin human infections. They also allow the survival, growth and transmission of bacteria such as Legionella, Mycobacteria and Vibrio species in water systems. The purpose of this study was to investigate the co-occurrence of potentially pathogenic FLA and their associated bacteria in hospital water networks in Johannesburg, South Africa. A total of 178 water (n = 95) and swab (n = 83) samples were collected from two hospital water distribution systems. FLA were isolated using the amoebal enrichment technique and identified using PCR and 18S rDNA sequencing. Amoebae potentially containing intra-amoebal bacteria were lysed and cultured on blood agar plates. Bacterial isolates were characterized using the VITEK®2 compact System. Free-living amoebae were isolated from 77 (43.3 %) of the samples. Using microscopy, PCR and 18S rRNA sequencing, Acanthamoeba spp. (T3 and T20 genotypes), Vermamoeba vermiformis and Naegleria gruberi specie were identified. The Acanthamoeba T3 and T20 genotypes have been implicated in eye and central nervous system infections. The most commonly detected bacterial species were Serratia marcescens, Stenotrophomonas maltophilia, Delftia acidovorans, Sphingomonas paucimobilis and Comamonas testosteroni. These nosocomial pathogenic bacteria are associated with systematic blood, respiratory tract, the urinary tract, surgical wounds and soft tissues infections. The detection of FLA and their associated opportunistic bacteria in the hospital water systems point out to a potential health risk to immune-compromised individuals.

Keywords

Amoebal enrichment Acanthamoeba spp. Vermamoeba vermiformis Serretia marcescens 

Supplementary material

436_2016_5271_MOESM1_ESM.pdf (23 kb)
ESM 1(PDF 22 kb)

References

  1. Abedkhojasteh H, Niyyati M, Rahimi F, Heidari M, Farnia S, Rezaeianr M (2013) First report of Hartmannella keratitis in a cosmetic soft contact lens wearer in Iran. Iran J Parasitol 8:481–485PubMedPubMedCentralGoogle Scholar
  2. Anaissie EJ, Penzak SR, Dignani C (2002) The hospital water supply or a source of nosocomial infection: a plea for action. Arch Intern Med 162:1483–1492CrossRefPubMedGoogle Scholar
  3. Bagheri HR, Shafiei R, Shafiei F, Sajjadi SA (2010) Isolation of Acanthamoeba spp. from drinking waters in several hospitals of Iran. Iran J Parasitol 5:19–25PubMedPubMedCentralGoogle Scholar
  4. Barbeau J, Buhler T (2001) Biofilms augment the number of free-living amoebae in dental unit waterlines. Res Microbiol 152:753–760CrossRefPubMedGoogle Scholar
  5. Bilgin H, Sarmis A, Tigen E, Soyletir G, Mulazimoglu L (2015) Delftia acidovorans: a rare pathogen in immunocompetent and immunocompromised patients. Can J Infect Dis Med Microbiol 26:277–279PubMedPubMedCentralGoogle Scholar
  6. Cabello-Vílchez AM, Mena R, Zuñiga J, Cermeño P, Martín-Navarro CM, Gonzále AC, López-Arencibia A, Reyes-Batlle M, Piñero JE, Valladares B, Lorenzo-Morales J (2014) Endosymbiotic Mycobacterium chelonae in a Vermamoeba vermiformis strain isolated from the nasal mucosa of an HIV patient in Lima, Peru. Exp Parasitol 145:127–130CrossRefGoogle Scholar
  7. Carlesso AM, Simonetti AB, Artuso GL, Rott MB (2007) Isolation and identification of potentially pathogenic free-living amoebae in samples from environments in a public hospital in the city of Porto Alegre, Rio Grande do Sul. Revista da Sociedade Brasileira de Medicina Tropical 40:316–320CrossRefPubMedGoogle Scholar
  8. Carlesso A, Artuso G, Caumo K, Rott M (2010) Potentially pathogenic Acanthamoeba isolated from a hospital in Brazil. Curr Microbiol 60:185–190CrossRefPubMedGoogle Scholar
  9. Cateau E, Delafont V, Hechard Y, Rodier MH (2014) Free-living amoebae: what part do they play in healthcare-associated infections? J Hos Infect 87:131–140CrossRefGoogle Scholar
  10. Corbett RW, Prout V, Haynes D, Edwards C, Frankel AH (2014) Problems associated with hemodialysis and travel. J Trav Med 21:255–259CrossRefGoogle Scholar
  11. Corsaro D, Feroldi V, Saucedo G, Ribas F, Loret JF, Greub G (2009) Novel Chlamydiales strains isolated from a water treatment plant. Environ Microbiol 11:188–200CrossRefPubMedGoogle Scholar
  12. Corsaro D, Walochnik J, Kohsler M, Rott MB (2015) Acanthamoeba misidentification and multiple labels: redefining genotypes T16, T19, and T20 and proposal for Acanthamoeba micheli. sp. nov. (Genotype T19). Parasitol Res 114:2481–2490CrossRefPubMedGoogle Scholar
  13. Coşkun KA, Ozcelik S, Tutar L, Eladi N, Tutar Y (2013) Isolation and identification of free-living amoebae from tap water in Sivas, Turkey. Biomed Res Int 2013:675145PubMedPubMedCentralGoogle Scholar
  14. Coulon C, Collignon A, McDonnell G, Thomas V (2010) Resistance of Acanthamoeba cysts to disinfection treatments used in health care settings. J Clin Microbiol 48:2689–2697CrossRefPubMedPubMedCentralGoogle Scholar
  15. Dendana F, Sellami H, Jarraya F, Sellami A, Makni F, Cheikhrouhou F, Hachicha J, Ayadi A (2008) Free-living amoebae (FLA): detection, morphological and molecular identification of Acanthamoeba genus in the hydraulic system of an haemodialysis unit in Tunisia. Parasit 15:137–142CrossRefGoogle Scholar
  16. Doust RH, Mobarez MA, Bagheri H, Khoramabadi N (2008) Interaction of Legionellae and free-living amoebae within hospital water supplies. Res J Parasitol 3:104–113CrossRefGoogle Scholar
  17. Dupuy M, Berne F, Herbelin P, Binet M, Berthelot N, Rodier MH, Soreau S, Héchard Y (2014) Sensitivity of free-living amoeba trophozoites and cysts to water disinfectants. Int J Hyg Enviro Heal 217:335–339CrossRefGoogle Scholar
  18. Fuerst PA, Booton GC, Crary M (2015) Phylogenetic analysis and the evolution of the 18S rRNA gene typing system of Acanthamoeba. J Eukayr Microbiol 62:69–84CrossRefGoogle Scholar
  19. Gomez-Valero L, Buchrieser C (2013) Genome dynamics in Legionella: the basis of versatility and adaptation to intracellular replication. Cold Spring Harb Perspect Med 3. doi:10.1101/cshperspect.a009993
  20. Gonzalez-Robles A, Flores-Langarica A, Omana-Molina M, Shibayama M (2001) Acanthamoeba castellanii: ultrastructure of trophozoites using fast free fixation. J Electr Micro 50:423–427CrossRefGoogle Scholar
  21. Greub G, Raoul D (2004) Microorganisms resistant to free living amoebae. Clin Microbiol Rev 17:413–433CrossRefPubMedPubMedCentralGoogle Scholar
  22. Hassan A, Farouk H, Hassanein F, Abdul-Ghani R, Abdelhady AH (2012) Acanthamoeba contamination of hemodialysis and dental units in Alexandria, Egypt: a neglected potential source of infection. J Infect Pub Heal 5:304–310CrossRefGoogle Scholar
  23. Khurana S, Biswal M, Kaur H, Malhotra P, Arora P, Megha K, Taneja N, Sehgal R (2015) Free living amoebae in water sources of critical units in a tertiary care hospital in India. Indian J Med Microbiol 33:343–348CrossRefPubMedGoogle Scholar
  24. Laganà P, Caruso G, Piccione D, Gioffrè ME, Pino R, Delia S (2014) Legionella spp., amoebae and not-fermenting Gram negative bacteria in an Italian university hospital water system. Ann Agric Environ Med 21:489–493CrossRefPubMedGoogle Scholar
  25. Lasheras A, Boulestreau H, Rogues AM, Ohayon-Courtes C, Labadie JC, Gachie JP (2006) Influence of amoebae and physical and chemical characteristics of water on presence and proliferation of Legionella species in hospital water systems. Am J Infect Control 34:520–525CrossRefPubMedGoogle Scholar
  26. Lasjerdi Z, Niyyati M, Haghighi A, Shahabi S, Biderouni FT, Taghipour N, Eftekhar M, Nazemalhosseini Mojarad E (2011) Potentially pathogenic free-living amoebae isolated from hospital wards with immunodeficient patients in Tehran. Iranian J Parasitol 109:575–580CrossRefGoogle Scholar
  27. Lone R, Syed K, AbuduL R, Sajjad Sheikh A, Shah F (2009) Unusual case of methicillin resistant Staphylococcus aureus and Acanthamoeba keratitis in a non-contact lens wearer from Kashmir, India. BMJ Case Rep 2009Google Scholar
  28. Maschio VJ, Corção G, Rott MB (2015) Identification of Pseudomonas spp. as amoeba-resistant microorganisms in isolates of Acanthamoeba. Revista Do Instituto De Medicina Tropical De Sao Paulo 57:81–83CrossRefPubMedCentralGoogle Scholar
  29. Michel R, Burghard H, Bergmann H (1995) Acanthamoeba isolated from a highly contaminated drinking water system of a hospital exhibited natural infections with Pseudomonas aeruginosa. Zentralblatt Fur Hygiene Und Umweltmedizin 196:532–544PubMedGoogle Scholar
  30. Miltner EC, Bermudez LE (2000) Mycobacterium avium grown in Acanthamoeba castellanii is protected from the effects of antimicrobials. Antimicrob Agents Chemother 44:1990–1994CrossRefPubMedPubMedCentralGoogle Scholar
  31. Molmeret M, Horn M, Wagner M, Santic M, Abu Kwaik Y (2005) Amoebae as training grounds for intracellular bacterial pathogens. Appl Environ Microbiol 71:20–22CrossRefPubMedPubMedCentralGoogle Scholar
  32. Muchesa P, Leifels M, Jurzik L, Barnard TG, Bartie C (2015) Free-living amoebae isolated from a hospital water system in South Africa: a potential source of nosocomial and occupational infection. Water Sci Technol Water Supply 16:70–78CrossRefGoogle Scholar
  33. Orsini J, Tam E, Hauser N, Rajayer S (2014) Polymicrobial Bacteremia Involving Comamonas testosterone. Case Rep Med 2014 (2014), Article ID 578127, 3pGoogle Scholar
  34. Ovrutsky AR, Chan ED, Kartalija M, Bai X, Jackson M, Gibbs S, Falkinham JO, Iseman MD, Reynolds PR, McDonnell G (2013) Co-occurrence of free-living amoebae and nontuberculous Mycobacteria in hospital water networks, and preferential growth of Mycobacterium avium in Acanthamoeba lenticulata. Appl Environ Microbiol 79:3185–3192CrossRefPubMedPubMedCentralGoogle Scholar
  35. Özdemir M, Pekcan S, Demircili ME, Taşbent FE, Feyzioğlu B, Pirinç S, Baykan M (2011) A rare cause of bacteremia in a pediatric patient with Down syndrome: Sphingomonas paucimobilis. Int J Med Sci 8:537–539CrossRefPubMedPubMedCentralGoogle Scholar
  36. Ozerol IH, Bayraktar M, Cizmeci Z, Durmaz R, Akbas E, Yildirim Z, Yologlu S (2006) Legionnaire’s disease: a nosocomial outbreak in Turkey. J Hosp Infect 62:50–57CrossRefPubMedGoogle Scholar
  37. Pagnier I, Raoult D, La Scola B (2008) Isolation and identification of amoeba-resisting bacteria from water in human environment by using an Acanthamoeba polyphaga co-culture procedure. Environ Microbiol 10:1135–1144CrossRefPubMedGoogle Scholar
  38. Pagnier I, Yutin N, Croce O, Makarova KS, Wolf YI, Benamar S, Raoult D, Koonin EV, La Scola B (2015) Babela massiliensis, a representative of a widespread bacterial phylum with unusual adaptations to parasitism in amoebae. Biol Dir 10:13CrossRefGoogle Scholar
  39. Perez PN, Ramirez M, Fernandez JA, De Guevara LL (2014) A patient presenting with cholangitis due to Stenotrophomonas maltophilia and Pseudomonas aeruginosa successfully treated with intrabiliary colistin. Curr Infect Dis Rep 6:5147Google Scholar
  40. Pickup ZL, Pickup R, Parry JD (2007) Growth of Acanthamoeba castellanii and Hartmannella vermiformis on live, heat-killed and DTAF-stained bacterial prey. FEMS Microbiol Ecol 61:264–272CrossRefPubMedGoogle Scholar
  41. Rahdar M, Niyyati M, Salehi M, Feghhi M, Makvandi M, Pourmehdi M, Farnia S (2012) Isolation and genotyping of Acanthamoeba strains from environmental sources in Ahvaz City, Khuzestan Province, Southern Iran. Iranian J Parasitol 7:22–26Google Scholar
  42. Risler A, Coupat-Goutaland B, Pélandakis M (2013) Genotyping and phylogenetic analysis of Acanthamoeba isolates associated with keratitis. Parasitol Res 112:3807–3816CrossRefPubMedGoogle Scholar
  43. Rodriguez-Zaragoza S (1994) Ecology of free-living amoebae. Crit Rev in Microbiol 20:225–241CrossRefGoogle Scholar
  44. Rohr U, Weber S, Michel R, Selenka F, Wilhelm M (1998) Comparison of free-living amoebae in hot water systems of hospitals with isolates from moist sanitary areas by identifying genera and determining temperature tolerance. Appl EnvironMicrobiol 64:1822–1824Google Scholar
  45. Rowbotham TJ (1980) Preliminary report on the pathogenicity of Legionella pneumophila for freshwater and soil amoebae. J Clin Pathol 33:1179–1183CrossRefPubMedPubMedCentralGoogle Scholar
  46. Saisongkorh W, Robert C, La Scola B, Raoult D, Rolain JM (2010) Evidence of transfer by conjugation of type IV secretion system genes between Bartonella Species and Rhizobium radiobacter in Amoeba. PLoS ONE 5, e12666. doi:10.1371/journal.pone.0012666 CrossRefPubMedPubMedCentralGoogle Scholar
  47. Scheid P (2014) Relevance of free-living amoebae as hosts for phylogenetically diverse microorganisms. Parasitol Res 113:2407–2414CrossRefPubMedGoogle Scholar
  48. Schmitz-Esser S, Toenshoff ER, Haider S, Heinz E, Hoenninger VM, Wagner M, Horn M (2008) Diversity of bacterial endosymbionts of environmental Acanthamoeba isolates. Appl Environ Microbiol 74:5822–5831CrossRefPubMedPubMedCentralGoogle Scholar
  49. Siddiqui R, Khan NA (2012) Biology and pathogenesis of Acanthamoeba. Parasit Vectors 5:6CrossRefPubMedPubMedCentralGoogle Scholar
  50. South African National Standard (SANAS) 241 (2015) Drinking water. Part1: Microbiological, physical aesthetic and chemical determinants.Google Scholar
  51. Stojek NM, Szymańska J, Dutkiewicz J (2008) Gram-negative bacteria in water distribution systems of hospitals. Ann Agric Environ Med 15:135–142PubMedGoogle Scholar
  52. Storey MV, Winiecka-KrusnellI J, Ashbolt NJ, Stenstorm TA (2004) The efficacy of heat and chlorine treatment against thermotolerant Acanthamoebae and Legionellae. Scand J Infect Dis 36:656–662CrossRefPubMedGoogle Scholar
  53. Taylor GT (1982) The role of pelagic heterotrophic protozoa in nutrient cycling: a review. Ann Inst Oceanogr 58:227–241Google Scholar
  54. Thomas JM, Ashbolt NJ (2011) Do free-living amoebae in treated drinking water systems present an emerging health risk. Environ Sci Technol 45:860–869CrossRefPubMedGoogle Scholar
  55. Thomas V, Bouchez T, Nicholas V, Robert S, Loret JF, Levi Y (2004) Amoebae in domestic water systems: resistance to disinfection treatments and implication in Legionella persistence. Appl Environ Microbiol 97:950–963CrossRefGoogle Scholar
  56. Thomas V, Herrera-Rimann K, Blannci DS, Greub G (2006) Biodiversity of amoebae and amoeba-resisting bacteria in a hospital water network. Appl Environ Microbiol 72:2428–2438CrossRefPubMedPubMedCentralGoogle Scholar
  57. Trabelsi H, Dendana F, Sellami A, Sellami H, Cheikhrouhou F, Neji S, Makni F, Ayadi A (2012) Pathogenic free-living amoebae: epidemiology and clinical review. Pathologie Biologie 60:399–405CrossRefPubMedGoogle Scholar
  58. Van der Wielen PWJJ, van der Kooij D (2013) Non-tuberculosis Mycobacteria, fungi, and opportunistic pathogens in unchlorinated drinking water in the Netherlands. Appl Environ Microbiol 79:825–834CrossRefPubMedPubMedCentralGoogle Scholar
  59. Visvesvara GS (2013) Infections with free-living amoebae. Hand Clinical Neurol 114:153–168CrossRefGoogle Scholar
  60. Visvesvara GS, Moura H, Shuster FL (2007) Pathogenic and opportunistic free-living amoebae: Acanthamoeba spp., Balamuthia mandrillaris, Naegleria fowleri and Sappinia diploidea. FEMS Immunol Med Microbiol 50:1–26CrossRefPubMedGoogle Scholar
  61. Wheeler WC, Pickett KM (2008) Topology-Bayes versus Clade-Bayes in phylogenetic analysis. Mol Biol Evol 25:447–453CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • P. Muchesa
    • 1
  • M. Leifels
    • 2
  • L. Jurzik
    • 2
  • K. B. Hoorzook
    • 1
  • T. G. Barnard
    • 1
  • C. Bartie
    • 1
  1. 1.Water and Health Research Centre, Faculty of Health SciencesUniversity of JohannesburgDoornfonteinSouth Africa
  2. 2.Department of Hygiene, Social and Environmental MedicineRuhr-University BochumBochumGermany

Personalised recommendations