Skip to main content
Log in

Microbiota from Rhabditis regina may alter nematode entomopathogenicity

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Here we report the presence of the entomopathogenic nematode Rhabditis (Rhabditoides) regina affecting white grubs (Phyllophaga sp. and Anomala sp.) in Mexico and R. regina-associated bacteria. Bioassays were performed to test the entomopathogenic capacity of dauer and L2 and L3 (combined) larval stages. Furthermore, we determined the diversity of bacteria from laboratory nematodes cultivated for 2 years (dauer and L2–L3 larvae) and from field nematodes (dauer and L2–L3 larvae) in addition to the virulence in Galleria mellonella larvae of some bacterial species from both laboratory and field nematodes. Dauer and non-dauer larvae of R. regina killed G. mellonella. Bacteria such as Serratia sp. (isolated from field nematodes) and Klebsiella sp. (isolated from larvae of laboratory and field nematodes) may explain R. regina entomopathogenic capabilities. Different bacteria were found in nematodes after subculturing in the laboratory suggesting that R. regina may acquire bacteria in different environments. However, there were some consistently found bacteria from laboratory and field nematodes such as Pseudochrobactrum sp., Comamonas sp., Alcaligenes sp., Klebsiella sp., Acinetobacter sp., and Leucobacter sp. that may constitute the nematode microbiome. Results showed that some bacteria contributing to entomopathogenicity may be lost in the laboratory representing a disadvantage when nematodes are cultivated to be used for biological control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abebe E, Jumba M, Bonner K, Gray V, Morris K, Thomas WK (2010) An entomopathogenic Caenorhabditis briggsae. J Exp Biol 213:3223–3229. doi:10.1242/jeb.043109

    Article  PubMed  Google Scholar 

  • Altschul S (1997) Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402. doi:10.1093/nar/25.17.3389

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Angulo MJ (1985) Relación clima-vegetación en el estado de Guanajuato. Dissertation, Universidad Nacional Autónoma de México

  • Bucher GE (1960) Potential bacterial pathogens of insects and their characteristics. J Insect Pathol 2:172–195

    Google Scholar 

  • Çakici FÖ, Sevim A, Demirbag Z, Demir A (2014) Investigating internal bacteria of Spodoptera littoralis (Boisd.) (Lepidoptera: Noctuidae) larvae and some Bacillus strains as biocontrol agents. Turk J Agric For 38:99–110. doi:10.3906/tar-1302-65

    Article  Google Scholar 

  • Chansang U, Mulla MS, Chantaroj S, Sawanpanyalert P (2010) The eye fly Siphunculina funicola (Diptera: Chloropidae) as a carrier of pathogenic bacteria in Thailand. Se Asian J Trop Med 41:61–71

    Google Scholar 

  • Ciche TA, Darby C, Ehlers RU, Forst S, Goodrich-Blair H (2006) Dangerous liaisons: the symbiosis of entomopathogenic nematodes and bacteria. Biol Cont 38:22–46. doi:10.1016/j.biocontrol.2005.11.016

    Article  Google Scholar 

  • Díaz de Rienzo MD, Stevenson P, Marchant R, Banat IM (2015) Antibacterial properties of biosurfactants against selected gram positive and negative bacteria. FEMS Microbiol Lett 363:Fnv224. doi:10.1093/femsle/fnv224

    Article  PubMed  Google Scholar 

  • Dillman AR, Sternberg PW (2012) Entomopathogenic nematodes. Curr Biol 22:R430–R431. doi:10.1016/j.cub.2012.03.047

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dillman AR, Chaston JM, Adams BJ, Ciche TA, Goodrich-Blair H, Stock SP, Sternberg PW (2012) An entomopathogenic nematode by any other name. PLoS Pathog 8:e1002527. doi:10.1371/journal.ppat.1002527

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Enríquez-Vara JN, Córdoba-Aguilar A, Guzmán-Franco AW, Alatorre-Rosas R, Contreras-Garduño J (2012) Is survival after pathogen exposure explained by host’s immune strength? A test with two species of white grubs (Coleoptera: Scarabaeidae) exposed to fungal infection. Enviromen Entomol 41:959–965. doi:10.1603/EN12011

    Article  Google Scholar 

  • Espelund M, Klaveness D (2014) Botulism outbreaks in natural environments—an update. Front Microbiol 5:1–7. doi:10.3389/fmicb.2014.00287

    Article  Google Scholar 

  • Faulde M, Spiesberger M (2013) Role of the moth fly Clogmia albipunctata (Diptera: Psychodinae) as a mechanical vector of bacterial pathogens in German hospitals. J Hosp Infect 83:51–60. doi:10.1016/j.jhin.2012.09.019

    Article  CAS  PubMed  Google Scholar 

  • Forst S, Clarke DJ (2002) Bacteria–nematode symbiosis. In: Gaugler R (ed) Entomopathogenic nematology. CABI, New York, pp 57–78

    Chapter  Google Scholar 

  • Goater TM, Cameron P, Goater CP, Esch GW (2014) Parasitism. The diversity and ecology of animal parasites, 2nd edn. Cambridge University Press, New York

    Google Scholar 

  • Gottlieb Y, Lavy E, Kaufman M, Markovics A, Ghanim M, Aroch I (2012) A novel bacterial symbiont in the nematode Spirocerca lupi. BMC Microbiol 12:133–139. doi:10.1186/1471-2180-12-133

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gouge DH, Snyder JL (2006) Temporal association of entomopathogenic nematodes (Rhabditida: Steinernematidae and Heterorhabditidae) and bacteria. J Invertebr Pathol 91:147–157. doi:10.1016/j.jip.2005.12.003

    Article  PubMed  Google Scholar 

  • Gupta AK, Nayduch D, Verma P, Shah B, Ghate HV, Patole MS, Shouche YS (2012) Phylogenetic characterization of bacteria in the gut of house flies (Musca domestica L.). FEMS Microbiol Ecol 79:581–593. doi:10.1111/j.1574-6941.2011.01248.x

    Article  CAS  PubMed  Google Scholar 

  • Guzmán-Franco AW, Hernández-López J, Enríquez-Vara JN, Alatorre-Rosas R, Tamayo-Mejía F, Ortega-Arenas LD (2011) Susceptibility of Phyllophaga polyphylla and Anomala cincta larvae to Beauveria bassiana and Metarhizium anisopliae isolates, and the interaction with soil properties. BioControl 57:553–563

    Article  Google Scholar 

  • Hill KK, Smith TJ, Helma CH, Ticknor LO, Foley BT, Svensson RT, Brown JL, Jonhnson EA, Smith LA, Okinaka RT, Jackson PJ, Marks JD (2007) Genetic diversity among botulinum neurotoxin-producing clostridial strains. J Bacteriol 189:818–832. doi:10.1128/JB.01180-06

    Article  CAS  PubMed  Google Scholar 

  • Hodgkin J, Partridge FA (2008) Caenorhabditis elegans meets microsporidia: the nematode killers from Paris. PLoS Biol 6:e1000005. doi:10.1371/journal.pbio.1000005

    Article  Google Scholar 

  • Hu PJ (2007) Dauer, WormBook, ed. The C. elegans Research Community, WormBook, doi/10.1895/wormbook. 1.144. 1

  • Jaffe K, Caetano FH, Sánchez P, Hernández JV, Caraballo L, Vitelli-Flores J, Monsalve W, Dorta B, Lemoine VR (2001) Sensitivity of ant (Cephalotes) colonies and individuals to antibiotics implies feeding symbiosis with gut microorganisms. Can J Zool 79:1120–1124. doi:10.1139/z01-079

    Article  Google Scholar 

  • Jafra S, Przysowa J, Czajkowski R, Michta A, Garbeva P, Van der Wolf JM (2006) Detection and characterization of bacteria from the potato rhizosphere degrading N-acyl-homoserine lactone. Can J Microbiol 52:1006–1015. doi:10.1139/w06-062

    Article  CAS  PubMed  Google Scholar 

  • Kämpfer P, Rosselló-Mora R, Scholz HC, Welinder-Olsson C, Falsen E, Busse HJ (2006) Description of Pseudochrobactrum gen. nov., with the two species Pseudochrobactrum asaccharolyticum sp. nov. and Pseudochrobactrum saccharolyticum sp. nov. Int J Syst Evol Microbiol 56:1823–1829. doi:10.1099/ijs.0.64256-0

    Article  PubMed  Google Scholar 

  • Kaya HK, Gaugler R (1993) Entomopathogenic nematodes. Annu Rev Entomol 38:181–206. doi:10.1146/annurev.en.38.010193.001145

    Article  Google Scholar 

  • Kleinbaum DG, Klein M (2006) Survival analysis: a self-learning text, 2nd edn. Springer Science & Business Media, New York

    Google Scholar 

  • Kuzina LV, Peloquin JJ, Vacek DC, Miller TA (2001) Isolation and identification of bacteria associated with adult laboratory Mexican fruit flies, Anastrepha ludens (Diptera: Tephritidae). Curr Microbiol 42:290–294. doi:10.1007/s002840110219

    CAS  PubMed  Google Scholar 

  • Levin BR (1996) The evolution and maintenance of virulence in microparasites. Emerg Infec Dis 2:93–102. doi:10.3201/eid0202.960203

    Article  CAS  Google Scholar 

  • Lewis EE, Clarke DJ (2012) Nematodes parasites and entomopathogens. In: Vega FE, Kaya HK (eds) Insect pathology. Academic, Amsterdam, pp 395–424

    Chapter  Google Scholar 

  • Li P, Dai C, Bao H, Chen L, Gao D, Wang G, Wang J, Wang H, Yedid G, Zhang K (2015) A new species of Pristionchus (Rhabditida: Diplogastridae) and its bacterial symbiont from Yixing, China. J Nematol 47:190–197

    PubMed  PubMed Central  Google Scholar 

  • Liu J, Berry RE, Moldenke AF (1997) Phylogenetic relationships of entomopathogenic nematodes (Heterorhabditidae and Steinernematidae) inferred from partial 18S rRNA gene sequences. J Invertebr Pathol 69:246–252. doi:10.1006/jipa.1997.4657

    Article  CAS  PubMed  Google Scholar 

  • Muir RE, Tan MW (2007) Leucobacter chromiireducens subsp. solipictus subsp. nov., a pigmented bacterium isolated from the nematode Caenorhabditis elegans, and emended description of L. chromiireducens. Int J Syst Evol Microbiol 57:2770–2776. doi:10.1099/ijs.0.64822-0

    Article  CAS  PubMed  Google Scholar 

  • Paramasiva I, Shouche Y, Kulkarni GJ, Krishnayya PV, Akbar SM, Sharma HC (2014) Diversity in gut microflora of Helicoverpa armigera populations from different regions in relation to biological activity of Bacillus thuringiensis δ-endotoxin Cry1Ac. Arch Insect Biochem 87:201–213. doi:10.1002/arch.21190

    Article  CAS  Google Scholar 

  • Park HW, Kim YO, Ha JS, Youn SH, Kim HH, Bilgrami AL, Shin CS (2011) Effects of associated bacteria on the pathogenicity and reproduction of the insect-parasitic nematode Rhabditis blumi (Nematoda: Rhabditida). Can J Microbiol 57:750–758. doi:10.1139/w11-067

    Article  CAS  PubMed  Google Scholar 

  • Petersen C, Hermann RJ, Barg MC, Schalkowski R, Dirksen P, Barbosa C, Schulenburg H (2015) Travelling at a slug’s pace: possible invertebrate vectors of Caenorhabditis nematodes. BMC Ecol 15:19. doi:10.1186/s12898-015-0050-z

    Article  PubMed  PubMed Central  Google Scholar 

  • Podgwaite JD, D’Amico V, Zerillo RT, Schoenfeldt H (2013) Bacteria associated with larvae and adults of the Asian longhorned beetle (Coleoptera: Cerambycidae). J Entomol Sci 48:128–138

    Article  Google Scholar 

  • Poinar GO (2011) The evolutionary history of nematodes—as revealed in stone, amber and mummies. Nematology monographs and perspectives 9. Brill, Leiden, p 429

    Google Scholar 

  • Priya NG, Ojha A, Kajla MK, Raj A, Rajagopal R (2012) Host plant induced variation in gut bacteria of Helicoverpa armigera. PLoS One 7:e30768. doi:10.1371/journal.pone.0030768

    Article  PubMed  Google Scholar 

  • Quiroz-Castañeda RE, Mendoza-Mejía A, Obregón-Barboza V, Martínez-Ocampo F, Hernández-Mendoza A, Martínez-Garduño F, Guillén-Solis G, Sánchez-Rodríguez F, Peña-Chora G, Ortíz-Hernández, Gaytán-Colín P, Dantán-González E (2015) Identification of a new Alcaligenes faecalis strain MOR02 and assessment of its toxicity and pathogenicity to insects. BioMed Res Int 2015: 10. doi:10.1155/2015/570243

  • Rae R, Riebesell M, Dinkelacker I, Wang Q, Herrmann M, Weller AM, Dieterich C, Sommer RJ (2008) Isolation of naturally associated bacteria of necromenic Pristionchus nematodes and fitness consequences. J Exp Biol 211:1927–1936. doi:10.1242/jeb.014944

    Article  CAS  PubMed  Google Scholar 

  • Roriz M, Santos C, Vasconcelos MW (2011) Population dynamics of bacteria associated with different strains of the pine wood nematode Bursaphelenchus xylophilus after inoculation in maritime pine (Pinus pinaster). Exp Parasitol 128:357–364. doi:10.1016/j.exppara.2011.04.008

    Article  PubMed  Google Scholar 

  • San-Blas E, Gowen SR, Pembroke B (2008) Scavenging or infection? Possible host choosing by entomopathogenic nematodes. Nematology 10:251–259. doi:10.1163/156854108783476359

    Article  Google Scholar 

  • Schulte F, Poinar GO (1991) Description of Rhabditis (Rhabditoides) regina n. sp. (Nematoda: Rhabditidae) from the body cavity of beetle larvae in Guatemala. Rev de Nématologie 14:151–156

    Google Scholar 

  • Stasiuk SJ, Scott MJ, Grant WN (2012) Developmental plasticity and the evolution of parasitism in an unusual nematode, Parastrongyloides trichosuri. EvoDevo 3:1–14. doi:10.1186/2041-9139-3-1

    Article  PubMed  PubMed Central  Google Scholar 

  • Stock SP (2015) Diversity, biology and evolutionary relationships. In: Campos-Herrera R (ed) Nematode pathogenesis of insects and other pests. Springer, New York, pp 3–27

    Chapter  Google Scholar 

  • Stock SP, Goodrich-Blair HG (2008) Entomopathogenic nematodes and their bacterial symbionts: the inside out of a mutualistic association. Symbiosis (Rehovot) 46:65–75

    Google Scholar 

  • Tambong JT (2013) Phylogeny of bacteria isolated from Rhabditis sp. (Nematoda) and identification of novel entomopathogenic Serratia marcescens strains. Curr Microbiol 66:138–144. doi:10.1007/s00284-012-0250-0

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729. doi:10.1093/molbev/mst197

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTALW: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680. doi:10.1093/nar/22.22.4673

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres-Barragan A, Suazo A, Buhler WG, Cardoza YJ (2011) Studies on the entomopathogenicity and bacterial associates of the nematode Oscheius carolinensis. Biol Control 59:123–129. doi:10.1016/j.biocontrol.2011.05.020

    Article  Google Scholar 

  • Tsukamura M, Mizuno S (1972) A new species of rapidly growing scotochromogenic mycobacteria, Mycobacterium neoaurum. Med Biol (Tokyo) 85:229–233

    Google Scholar 

  • Vaz-Moreira I, Novo A, Hantsis-Zacharov E, Lopes AR, Gomila M, Nunes OC, Manaia CM, Halpern M (2011) Acinetobacter rudis sp. nov. isolated from raw milk and raw wastewater. Int J Syst Evol Microbiol 61:2837–2843. doi:10.1099/ijs.0.027045-0

    Article  CAS  PubMed  Google Scholar 

  • Vicente CS, Nascimento F, Espada M, Mota M, Oliveira S (2011) Bacteria associated with the pinewood nematode Bursaphelenchus xylophilus collected in Portugal. Antonie Van Leeuwenhoek 100:477–481. doi:10.1007/s10482-011-9602-1

    Article  CAS  PubMed  Google Scholar 

  • Weisburg WG, Barns SM, Pelletier DA, Lane DJ (1991) 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wright ES, Yilmaz S, Noguera DR (2012) DECIPHER, a search-based approach to chimera identification for 16S rRNA sequences. App Environ Microb 78:717–725. doi:10.1128/AEM.06516-11

    Article  CAS  Google Scholar 

  • Yoon BK, Jackman JA, Kim MC, Cho NJ (2015) Spectrum of membrane morphological responses to antibacterial fatty acids and related surfactants. Langmuir 31:10223–10232. doi:10.1021/acs.langmuir.5b02088

    Article  CAS  PubMed  Google Scholar 

  • Zhang C, Liu J, Xu M, Sun J, Yang S, An X, Gao G, Lin M, Lai R, He Z, Wu Y, Zhang K (2008) Heterorhabditidoides chongmingensis gen. nov., sp. nov. (Rhabditida: Rhabditidae), a novel member of the entomopathogenic nematodes. J Invertebr Pathol 98:153–168. doi:10.1016/j.jip.2008.02.011

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

One anonymous reviewer and Dr. Bill Chobotar provided substantial comments to improve the paper. We thank Jhony Navat Enriquez-Vara and Ángel García Rivera for helping to collect white grubs, Michael Dunn for reading the manuscript, and A. Vera-Ponce de León and V. Higareda-Alvear for technical advice. Juan Carlos Torrez-Guzmán kindly identified Serratia and Metarhizium. The project was financed by Consejo Nacional de Ciencia y Tecnología (CONACyT, project 19660, LN-250996). A postdoctoral grant was provided by CONACyT to JGJC (Convocatory 290807; CVU 204973).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jesús Guillermo Jiménez-Cortés or Jorge Contreras-Garduño.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

R. regina inside a white grub´s leg which was collected from the field and maintained under sterile conditions. (MP4 65249 kb)

Below is the link to the electronic supplementary material.

Fig. S1

White grubs infected naturally by a) Serratia sp. and b) Metarhizium sp. (DOC 12275 kb)

Table S1

Bacteria found in R. regina and previously registered in different species of nematodes related to entomopathogens, parasites, and soil or plant root-feeders. 1 Kämpfer et al. 2006; 2 Jaffe et al. 2001; 3 Faulde et al. 2013; 4 Gottlieb et al. 2012; 5 Gupta et al. 2012; 6 Priya et al. 2012; 7 Jafra et al. 2006; 8 Park et al. 2011; 9 Quiroz-Castañeda et al. 2015; 10 Chansang et al. 2010; 11 Roriz et al. 2011; 12 Podgwaite et al. 2013; 13 Vicente et al. 2011; 14 Rae et al. 2008; 15 Torres-Barragan et al. 2011; 16 Tambong 2013; 17 Gouge and Snyder 2006; 18 Kuzina et al. 2001; 19 Vaz-Moreira et al. 2011; 20 Zhang et al. 2008; 21 Priya et al. 2012; 22 Paramasiva et al 2014; 23 Hodgkin and Partridge 2008; 24 Espelund and Klaveness 2014; 25 Muir and Tan 2007; 26 Tsukamura 1972. (DOC 676 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jiménez-Cortés, J.G., Canales-Lazcano, J., Lara-Reyes, N. et al. Microbiota from Rhabditis regina may alter nematode entomopathogenicity. Parasitol Res 115, 4153–4165 (2016). https://doi.org/10.1007/s00436-016-5190-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5190-3

Keywords

Navigation