Skip to main content

Advertisement

Log in

An 8-hydroxyquinoline-containing polymeric micelle system is effective for the treatment of murine tegumentary leishmaniasis

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The current treatment of leishmaniasis has been hampered due to the high toxicity of the available drugs and long duration protocols, which often lead to its abandonment. In the present study, a poloxamer 407-based delivery system was developed, and a molecule, 8-hydroxyquinoline (8-HQN), was incorporated with it, leading to an 8-HQN/micelle (8-HQN/M) composition. Assays were performed to evaluate the in vitro antileishmanial activity of 8-HQN/M against Leishmania amazonensis stationary promastigotes. The cytotoxicity in murine macrophages and in human red cells, as well as the efficacy of the treatment in macrophages infected by parasites, was also assessed. This product was also evaluated for the treatment of murine tegumentary leishmaniasis, using L. amazonensis-infected BALB/c mice. To evaluate the in vivo efficacy of the treatment, the average lesion diameter (area) in the infected tissue, as well as the parasite load at the site of infection (skin), spleen, liver and draining lymph nodes were examined. Non-incorporated micelle (B-8-HQN/M) and the free molecule (8-HQN) were used as controls, besides animals that received only saline. The parasite burden was evaluated by limiting dilution and quantitative real-time PCR (qPCR) techniques, and immunological parameters associated with the treatments were also investigated. In the results, the 8-HQN/M group, when compared to the others, presented more significant reductions in the average lesion diameter and in the parasite burden in the skin and all evaluated organs. These animals also showed significantly higher levels of parasite-specific IFN-γ, IL-12, and GM-CSF, associated with low levels of IL-4 and IL-10, when compared to the saline, 8-HQN/M, and B-8-HQN groups. A predominant IL-12-driven IFN-γ production, against parasite proteins, mainly produced by CD4+ T cells, was observed in the treated animals, post-infection. In conclusion, 8-HQN/M was highly effective in treating L. amazonensis-infected BALB/c mice and can be considered alone, or combined with other drugs, as an alternative treatment for tegumentary leishmaniasis.

Therapeutic scheme and immunological and parasitological parameters developed in the present study

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Afonso LC, Scott P (1993) Immune responses associated with susceptibility of C57BL/10 mice to Leishmania amazonensis. Infect Immun 61:2952–2959

    CAS  PubMed  PubMed Central  Google Scholar 

  • Akash MS, Rehman K (2015) Recent progress in biomedical applications of Pluronic (PF127): pharmaceutical perspectives. J Control Release 209:120–138

    Article  CAS  PubMed  Google Scholar 

  • Alvar J, Vélez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, Leishmaniasis Control Team WHO (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS ONE 7, e35671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Annang F, Pérez-Moreno G, García-Hernández R, Cordon-Obras C, Martín J, Tormo JR, Rodríguez L, Pedro N, Gómez-Pérez V, Valente M, Reyes F, Genilloud O, Vicente F, Castanys S, Ruiz-Pérez LM, Navarro M, Gamarro F, González-Pacanowska D (2015) High-throughput screening platform for natural product-based drug discovery against 3 neglected tropical diseases: human African trypanosomiasis, leishmaniasis, and Chagas’ disease. J Biomol Screen 20:82–91

    Article  CAS  PubMed  Google Scholar 

  • Awaad AS, Al-Zaylaee HM, Alqasoumi SI, Zain ME, Aloyan EM, Alafeefy AM, Awad ES, El-Meligy RM (2014) Anti-leishmanial activities of extracts and isolated compounds from Drechslera rostrata and Eurotium tonpholium. Phytother Res 28:774–780

    Article  CAS  PubMed  Google Scholar 

  • Baharia RK, Tandon R, Sharma T, Suthar MK, Das S, Siddiqi MI et al (2015) Recombinant NAD-dependent SIR-2 protein of Leishmania donovani: immunobiochemical characterization as a potential vaccine against visceral leishmaniasis. PLoS Negl Trop Dis 9, e0003557

    Article  PubMed  PubMed Central  Google Scholar 

  • Barichello JM, Morishita M, Takayama K, Nagai T (1999) Absorption of insulin from pluronic F-127 gels following subcutaneous administration in rats. Int J Pharm 184:189–198

    Article  CAS  PubMed  Google Scholar 

  • Barral A, Pedral-Sampaio D, Momen H, Mahon-Pratt D, Jesus AR, Almeida R, Badaró R, Barral-Neto M, Carvalho EM, Johnson WD, Grimaldi GJ (1991) Leishmaniasis in Bahia, Brazil: evidence that Leishmania amazonensis produces a wide spectrum of clinical disease. Am J Trop Med Hyg 44:536–546

    CAS  PubMed  Google Scholar 

  • Bhattacharya SK, Jha TK, Sundar S, Thakur CP, Engel J, Sindermann H, Junge K, Karbwang J, Bryceson AD, Berman JD (2004) Efficacy and tolerability of miltefosine for childhood visceral leishmaniasis in India. Clin Infect Dis 38:217–221

    Article  CAS  PubMed  Google Scholar 

  • Brugués AP, Naveros BC, Calpena Campmany AC, Pastor PH, Saladrigas RF, Lizandra CR (2015) Developing cutaneous applications of pamamomycin entrapped in stimuli-sensitive block copolymer nanogeldispersions. Nanomedicine (London) 10:227–240

    Article  Google Scholar 

  • Carrión J, Nieto A, Iborra S, Iniesta V, Soto M, Folgueira C, Abanades DR, Requena JM, Alonso C (2006) Immunohistological features of visceral leishmaniasis in BALB/c mice. Parasite Immunol 28:173–183

    Article  PubMed  Google Scholar 

  • Carvalho RF, Ribeiro IF, Miranda-Vilela AL, Souza Filho J, Martins OP, Cintra E, Silva D, De O, Tedesco AC, Lacava ZG, Báo SN, Sampaio RN (2013) Leishmanicidal activity of amphotericin B encapsulated in PLGA-DMSA nanoparticles to treat cutaneous leishmaniasis in C57BL/6 mice. Exp Parasitol 135:217–222

    Article  PubMed  Google Scholar 

  • Chávez-Fumagalli MA, Costa MA, Oliveira DM, Ramírez L, Costa LE, Duarte MC, Martins VT, Oliveira JS, Olortegi CC, Bonay P, Alonso C, Tavares CA, Soto M, Coelho EA (2010) Vaccination with the Leishmania infantum ribosomal proteins induces protection in BALB/c mice against Leishmania chagasi and Leishmania amazonensis challenge. Microbes Infect 12:967–977

    Article  PubMed  Google Scholar 

  • Chávez-Fumagalli MA, Ribeiro TG, Castilho RO, Fernandes SO, Cardoso VN, Coelho CS, Mendonça DV, Soto M, Tavares CA, Faraco AA, Coelho EA (2015) New delivery systems for amphotericin B applied to the improvement of leishmaniasis treatment. Rev Soc Bras Med Trop 48:235–242

    Article  PubMed  Google Scholar 

  • Chawla B, Madhubala R (2010) Drug targets in Leishmania. J Parasit Dis 34:1–13

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen LC, Chen YC, Su CY, Hong CS, Ho HO, Sheu MT (2016) Development and characterization of self-assembling lecithin-based mixed polymeric micellecontaining quercetin in cancer treatment and an in vivo pharmacokinetic study. Int J Nanomedicine 11:1557–1566

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chiellini F, Piras AM, Errico C, Chiellini E (2008) Micro/nanostructured polymeric systems for biomedical and pharmaceutical applications. Nanomedicine (London) 3:367–393

    Article  CAS  Google Scholar 

  • Coelho EA, Tavares CAP, Carvalho FAA, Chaves KF, Teixeira KN, Rodrigues RC, Charest H, Matlashewski G, Gazzinelli RT, Fernandes AP (2003) Immune responses induced by the Leishmania (Leishmania) donovani A2 antigen, but not by the LACK antigen, are protective against experimental Leishmania (Leishmania) amazonensis infection. Infect Immun 71:3988–3994

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coelho LIC, Paes M, Guerra JA, Md B, Coelho C, Lima B, Brito ME, Brandão-Filho SP (2011) Characterization of Leishmania spp. causing cutaneous leishmaniasis in Manaus, Amazonas, Brazil. Parasitol Res 108:671–677

    Article  PubMed  Google Scholar 

  • Collery P, Lechenault F, Cazabat A, Juvin E, Khassanova L, Evangelou A, Keppler B (2000) Inhibitory effects of gallium chloride and tris (8-quinolinolato) gallium III on A549 human malignant cell line. Anticancer Res 20:955–958

    CAS  PubMed  Google Scholar 

  • Costa LE, Goulart LR, Pereira NC, Lima MI, Duarte MC, Martins VT, Lage PS, Menezes-Souza D, Ribeiro TG, Melo MN, Fernandes AP, Soto M, Tavares CA, Chávez-Fumagalli MA, Coelho EA (2014) Mimotope-based vaccines of Leishmania infantum antigens and their protective efficacy against visceral leishmaniasis. PLoS ONE 9, e110014

    Article  PubMed  PubMed Central  Google Scholar 

  • Croft SL, Coombs GH (2003) Leishmaniasis–current chemotherapy and recent advances in the search for novel drugs. Trends Parasitol 19:502–508

    Article  CAS  PubMed  Google Scholar 

  • Cruz AK, Toledo JS, Falade M, Terrão MC, Kamchonwongpaisan S, Kyle DE, Uthaipibull C (2009) Current treatment and drug discovery against Leishmania spp. and Plasmodium spp.: a review. Curr Drug Targets 10:178–192

    Article  CAS  PubMed  Google Scholar 

  • Dagnino AP, Barros FM, Ccana-Ccapatinta GV, Prophiro JS, Poser GL, Romão PR (2015) Leishmanicidal activity of lipophilic extracts of some Hypericum species. Phytomedicine 22:71–76

    Article  PubMed  Google Scholar 

  • Dardari Z, Lemrani M, Bahloul A, Sebban A, Hassar M, Kitane S, Berrada M, Boudouma M (2004) Antileishmanial activity of a new 8-hydroxyquinoline derivative designed 7-[5′-(3′-phenylisoxazolino) methyl]-8-hydroxyquinoline: preliminary study. Farmaco 59:195–199

    Article  CAS  PubMed  Google Scholar 

  • Duarte MC, Lage LMR, Lage DP, Mesquita JT, Salles BCS, Lavorato SN, Menezes-Souza D, Roatt BM, Alves RJ, Tavares CAP, Tempone AG, Coelho EAF (2016) An effective in vitro and in vivo antileishmanial activity and mechanism of action of 8-hydroxyquinoline against Leishmania species causing visceral and tegumentary leishmaniasis. Vet Parasitol 217:81–88

    Article  Google Scholar 

  • Dumas C, Muyombwe A, Roy G, Matte C, Ouellette M, Olivier M, Papadopoulou B (2003) Recombinant Leishmania major secreting biologically active granulocyte-macrophage colony-stimulating factor survives poorly in macrophages in vitro and delays disease development in mice. Infect Immun 71:6499–6509

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fielding RM, Smith PC, Wang LH, Porter J, Guo LS (1991) Comparative pharmacokinetics of amphotericin B after administration of a novel colloidal delivery system, ABCD, and a conventional formulation to rats. Antimicrob Agents Chemother 35:1208–1213

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fuertes MA, Nguewa PA, Castilla J, Alonso C, Pérez JM (2008) Anticancer compounds as leishmanicidal drugs: challenges in chemotherapy and future perspectives. Curr Med Chem 15:433–439

    Article  CAS  PubMed  Google Scholar 

  • Garcez LM, Goto H, Ramos PK, Brigido MDC, Gomes PAF, Souza RA, De Luca PM, Mendonça SC, Muniz JA, Shaw JJ (2002) Leishmania (Leishmania) amazonensis-induced cutaneous leishmaniasis in the primate Cebus apella: a model for vaccine trials. Intern J Parasitol 32:1755–1764

    Article  CAS  Google Scholar 

  • Gershkovich P, Wasan EK, Lin M, Sivak O, Leon CG, Clement JG, Wasan KM (2009) Pharmacokinetics and biodistribution of amphotericin B in rats following oral administration in a novel lipid-based formulation. J Antimicrob Chemother 64:101–108

    Article  CAS  PubMed  Google Scholar 

  • Glisoni RJ, Sosnik A (2014) Encapsulation of the antimicrobial and immunomodulator agent nitazoxanide within polymeric micelle. J Nanosci Nanotechnol 14:4670–4682

    Article  CAS  PubMed  Google Scholar 

  • Grimaldi JG, Tesh RB (1993) Leishmaniasis of the New World: current concepts and implications for future research. Clin Microbiol Rev 6:230–250

    Article  PubMed  PubMed Central  Google Scholar 

  • Herwaldt BL, Berman JD (1992) Recommendations for treating leishmaniasis with sodium stibogluconate (Pentostam) and review of pertinent clinical studies. Am J Trop Med Hyg 46:296–306

    CAS  PubMed  Google Scholar 

  • Hughes JP, Rees SS, Kalindjian SB, Philpott KL (2011) Principles of early drug discovery. Br J Pharmacol 162:1239–1249

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jain SK, Chourasia MK, Sabitha M, Jain R, Jain AK, Ashawat M, Jha AK (2003) Development and characterization of transdermal drug delivery systems for diltiazem hydrochloride. Drug Deliv 10:169–177

    Article  CAS  PubMed  Google Scholar 

  • Lage PS, Andrade PHR, Lopes ADS, Chávez Fumagalli MA, Valadares DG, Duarte MC, Pagliara Lage D, Costa LE, Martins VT, Ribeiro TG, Filho JD, Tavares CA, de Pádua RM, Leite JP, Coelho EA (2013) Strychnos pseudoquina and its purified compounds present an effective in vitro antileishmanial activity. Evidence-based Complement Altern Med 1:9

    Google Scholar 

  • Lage DP, Martins VT, Duarte MC, Garde E, Chávez-Fumagalli MA, Menezes-Souza D, Roatt BM, Tavares CA, Soto M, Coelho EA (2015) Prophylactic properties of a Leishmania-specific hypothetical protein in a murine model of visceral leishmaniasis. Parasite Immunol 37:646–656

    Article  CAS  PubMed  Google Scholar 

  • Lamch L, Bazylińska U, Kulbacka J, Pietkiewicz J, Bieżuńska-Kusiak K, Wilk KA (2014) Polymeric micelle for enhanced Photofrin II® delivery, cytotoxicity and pro-apoptotic activity in human breast and ovarian cancer cells. Photodiagnosis Photodyn Ther 11:570–585

    Article  CAS  PubMed  Google Scholar 

  • Launois P, Tacchini-Cottier F, Kieny MP (2008) Cutaneous leishmaniasis: progress towards a vaccine. Expert Rev Vaccines 7:1277–1287

    Article  PubMed  Google Scholar 

  • Lentz DL, Gershon H, Marini H (1999) New antifungal agents that inhibit the growth of Candida species: dichlorinated 8-quinolinols. Mycopathologia 147:117–120

    Article  CAS  PubMed  Google Scholar 

  • Martins VT, Chávez-Fumagalli MA, Costa LE, Martins AMCC, Lage PS, Lage DP, Duarte MC, Valadares DG, Magalhães RD, Ribeiro TG, Nagem RA, Da Rocha WD, Régis WC, Soto M, Coelho EA, Fernandes AP, Tavares CA (2013) Antigenicity and protective efficacy of a Leishmania amastigote-specific protein, member of the super-oxygenase family, against visceral leishmaniasis. PLoS Negl Trop Dis 7, e2148

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Martins VT, Duarte MC, Chávez-Fumagalli MA, Menezes-Souza D, Coelho CS, Magalhães-Soares DF, Fernandes AP, Soto M, Tavares CA, Coelho EA (2015) A Leishmania-specific hypothetical protein expressed in both promastigote and amastigote stages of Leishmania infantum employed for the serodiagnosis of, and as a vaccine candidate against, visceral leishmaniasis. Parasite Vectors 8:363

    Article  Google Scholar 

  • Minodier P, Parola P (2007) Cutaneous leishmaniasis treatment. Travel Med Infect Dis 5:150–158

    Article  PubMed  Google Scholar 

  • Murray HW, Cervia JS, Hariprashad J, Taylor AP, Stoeckle MY, Hockman H (1995) Effect of granulocyte-macrophage colony-stimulating factor in experimental visceral leishmaniasis. J Clin Invest 95:1183–1192

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366:1561–1577

    Article  CAS  PubMed  Google Scholar 

  • Neves J, Amiji MM, Bahia MF, Sarmento B (2010) Nanotechnology-based systems for the treatment and prevention of HIV/AIDS. Adv Drug Deliv Rev 62:458–477

    Article  PubMed  Google Scholar 

  • Oliveira DM, Valadares DG, Duarte MC, Costa LE, Martins VT, Gomes RF, Melo MN, Soto M, Tavares CA, Coelho EA (2012) Evaluation of parasitological and immunological parameters of Leishmania chagasi infection in BALB/c mice using different doses and routes of inoculation of parasites. Parasitol Res 110:1277–1285

    Article  PubMed  Google Scholar 

  • Prachayasittikul V, Prachayasittikul S, Ruchirawat S, Prachayasittikul V (2013) 8-hydroxyquinolines: a review of their metal chelating properties and medicinal applications. Drug Des Devel Ther 7:1157–1178

    Article  PubMed  PubMed Central  Google Scholar 

  • Rabito MF, Britta EA, Pelegrini BL, Scariot DB, Almeida MB, Nixdorf SL, Nakamura CV, Ferreira IC (2014) In vitro and in vivo antileishmanial activity of sesquiterpene lactone-rich dichloromethane fraction obtained from Tanacetum parthenium (L.) Schultz-Bip. Exp Parasitol 143:18–23

    Article  CAS  PubMed  Google Scholar 

  • Reddy BP, Yadav HK, Nagesha DK, Raizaday A, Karim A (2015) Polymeric micelle as novel carriers for poorly soluble drugs-a review. J Nanosci Nanotechnol 15:4009–4018

    Article  PubMed  Google Scholar 

  • Renslo AR, McKerrow JH (2006) Drug discovery and development for neglected parasitic diseases. Nat Chem Biol 2:701–710

    Article  CAS  PubMed  Google Scholar 

  • Ribeiro TG, Chávez-Fumagalli MA, Valadares DG, França JR, Rodrigues LB, Duarte MC, Lage PS, Andrade PH, Lage DP, Arruda LV, Abánades DR, Costa LE, Martins VT, Tavares CA, Castilho RO, Coelho EA, Faraco AA (2014a) Novel targeting using nanoparticles: an approach to the development of an effective anti-leishmanial drug delivery system. Int J Nanomedicine 14:877–890

    Google Scholar 

  • Ribeiro TG, Franca JR, Fuscaldi LL, Santos ML, Duarte MC, Lage PS, Martins VT, Costa LE, Fernandes SO, Cardoso VN, Castilho RO, Soto M, Tavares CA, Faraco AA, Coelho EA, Chávez-Fumagalli MA (2014b) An optimized nanoparticle delivery system based on chitosan and chondroitin sulfate molecules reduces the toxicity of amphotericin B and is effective in treating tegumentary leishmaniasis. Int J Nan 9:5341–5353

    Google Scholar 

  • Rongbin H, Lei X, Ying L, Xiangping D, Xuan C, Lanfang L, Cuiyun Y, Yanming C, Guotao T (2016) Synthesis and in vitro evaluation of pH-sensitive PEG-I-dC16 block polymer micelle for anticancer drug delivery. J Pharm Pharmacol 68:751–761

    Article  PubMed  Google Scholar 

  • Serno T, Geidobler R, Winter G (2011) Protein stabilization by cyclodextrins in the liquid and dried state. Adv Drug Deliv Rev 63:1086–1106

    Article  CAS  PubMed  Google Scholar 

  • Shen AY, Chen CP, Roffler S (1999) A chelating agent possessing cytotoxicity and antimicrobial activity: 7-morpholinomethyl-8-hydroxyquinoline. Life Sci 64:813–825

    Article  CAS  PubMed  Google Scholar 

  • Torchilin VP, Levchenko TS, Whiteman KR, Yaroslavov AA, Tsatsakis AM, Rizos AK, Michailova EV, Shtilman MI (2001) Amphiphilic poly-N-vinylpyrrolidones: synthesis, properties and liposome surface modification. Biomaterials 22:3035–3044

    Article  CAS  PubMed  Google Scholar 

  • Trouiller P, Olliaro P, Torreele E, Orbinski J, Laing R, Ford N (2002) Drug development for neglected diseases: a deficient market and a public-health policy failure. Lancet 359:2188–2194

    Article  PubMed  Google Scholar 

  • Tzeng CC, Lee KH, Wang TC, Han CH, Chen YL (2000) Synthesis and cytotoxic evaluation of a series of gamma-substituted gamma-aryloxymethyl-alpha-methylene-gamma-butyrolactones against cancer cells. Pharm Res 17:715–719

    Article  CAS  PubMed  Google Scholar 

  • Valadares DG, Duarte MC, Oliveira JS, Chávez-Fumagalli MA, Martins VT, Costa LE, Leite JP, Santoro MM, Régis WC, Tavares CA, Coelho EA (2011) Leishmanicidal activity of the Agaricus blazei Murill in different Leishmania species. Parasitol Int 60:357–363

    Article  PubMed  Google Scholar 

  • Vyas SP, Gupta S (2006) Optimizing efficacy of amphotericin B through nanomodification. Int J Nanomedicine 1:417–432

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Yu L, Han L, Sha X, Fang X (2007) Difunctional Pluronic copolymer micelle for paclitaxel delivery: synergistic effect of folate-mediated targeting and Pluronic-mediated overcoming multidrug resistance in tumor cell lines. Int J Pharm 337:63–73

    Article  CAS  PubMed  Google Scholar 

  • Yousefi E, Eskandari A, Gharavi MJ, Khademvatan S (2014) In vitro activity and cytotoxicity of Crocus sativus extract against Leishmania major (MRHO/IR/75/ER). Infect Disord Drug Targets 14:56–60

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Shang L, Jin H, Ma C, Wu Y, Liu Q, Xia Z, Wei F, Zhu XQ, Gao H (2010) In vitro and in vivo antileishmanial efficacy of nitazoxanide against Leishmania donovani. Parasitol Res 107:475–479

    Article  PubMed  Google Scholar 

  • Zhang W, Shi Y, Chen Y, Ye J, Sha X, Fang X (2011) Multifunctional Pluronic P123/F127 mixed polymeric micelle loaded with paclitaxel for the treatment of multidrug resistant tumors. Biomaterials 32:2894–2906

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from Instituto Nacional de Ciência e Tecnologia em Nano-biofarmacêutica (INCT-NanoBiofar), FAPEMIG (CBB-APQ-00819-12 and CBB-APQ-01778-2014), and CNPq (APQ-482976/2012-8, APQ-488237/2013-0, and APQ-467640/2014-9). EAFC is a grant recipient of CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eduardo Antonio Ferraz Coelho.

Ethics declarations

Conflict of interest

The authors confirm that they have no conflicts of interest in relation to this work.

Additional information

Highlights

⇒ An 8-hydroxyquinoline-containing micelles system (8-HQN/M) was prepared. ⇒ This composition was effective against L. amazonensis in in vitro assays. ⇒ No toxicity was observed in murine macrophages and human red cells. ⇒ L. amazonensis-infected BALB/c mice were treated with 8-HQN/M. ⇒ They showed reduction in the lesion size and parasite load. ⇒ A Th1 immune response was developed in the 8-HQN/M-treated and infected animals.

José Mário Barichello, Eduardo Antonio Ferraz Coelho, and Mariana Costa Duarte are co-senior authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lage, L.M.d.R., Barichello, J.M., Lage, D.P. et al. An 8-hydroxyquinoline-containing polymeric micelle system is effective for the treatment of murine tegumentary leishmaniasis. Parasitol Res 115, 4083–4095 (2016). https://doi.org/10.1007/s00436-016-5181-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5181-4

Keywords

Navigation