Skip to main content
Log in

Ecological study on antimicrobial-resistant zoonotic bacteria transmitted by flies in cattle farms

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Flies were qualitatively and quantitatively monitored on both livestock animals and the surrounding environment to investigate their role as a potential carrier for antimicrobial-resistant bacteria of zoonotic importance in cattle farms. This was done by the use of visual observations and animal photography; meanwhile, in the surrounding environment, flies were collected using sticky cards and then microscopically identified. Representative fly samples were cultured for bacterial isolation, biochemical identification, and then tested against common 12 antibiotics. The total average of dipterous flies in examined farms was 400.42 ± 6.2. Culicoides biting midges were the most common existing species (70.01 %) followed by house flies, stable flies, and mosquitoes (18.31, 7.74, and 3.91 %, respectively) at X 2 = 9.0, P < 0.05. The most predominant bacterial isolates were Escherichia coli (22.6 %), Staphylococcus aureus and Enterobacter (17.3 % each), coagulase-negative Staphylococci (CNS) (14.7 %), Klebsiella sp. (8 %), Salmonella spp. (6.7 %), and Shigella spp. and Proteus spp. (6.7 % each). The tested bacterial isolates were resistant to variant antibiotics used. S. aureus exhibited 100 % resistance to colistine. However, E. coli revealed 92.9 and 78.6 % resistance against tetracycline and colistine, respectively. Both Salmonella spp. and Shigella spp. were 100 % resistant to penicillin, and Klebsiella sp. had 100 % resistance to tetracycline. In conclusion, Culicoides biting midges and house flies could be considered as a potential carrier for multi-drug-resistant bacteria of zoonotic importance. Furthermore, cows’ environment has an essential role in propagation and wide spread of antimicrobial-resistant bacterial pathogens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Adams J (2003) Vector: filth flies. CAMM swine. Pork industry handbook, last ed., Purdue University, chapter 10b, pp1–10

  • Al-Halfi MA (2001) Toxonomical and Ecological studies on the medical insect (Order: Diptera caused myiasis in Basrah. Msc. Thesis, basrahunive. Iraq.

  • Angelina BF, Alenear MM, Figueriedo LA, Razook AC, Noely J (2005) Genetic analysis of the infestation of females of the Caracu cattle breed by horn fly (Haematobia irritans irritans) (L.) (Diptera, Muscidae). Genet Mol Biol 28(2):242–247

    Article  Google Scholar 

  • Binh CTT, Heuer H, Kaupenjohann M, Smalla K (2008) Piggery manure used for soil fertilization is a reservoir for transferable antibiotic resistance plasmids. FEMS Microbiol Ecol 66:25–37

    Article  CAS  PubMed  Google Scholar 

  • Borkent A, Willis Wagner W (1997) World species of biting midges (Diaptera: Ceratopogonidae). Bull Am Mum Nat Hist 233:1–257

    Google Scholar 

  • Campbell J, Skoda S, Berkebile D, Boxler D, Thomas G, Adams D, Davis R (2001) Effects of stable flies (Diptera: Muscidae) on weight gains of grazing yearling cattle. J Econ Entomol 94(3):780–783

    Article  CAS  PubMed  Google Scholar 

  • Clinical and Laboratory Standard Institute (CLSI) (2010) Methods for antimicrobial dilution and disk susceptibility testing of infrequently isolated or fastidious bacteria. Approved Guidelines 3rd edn., M54-A2, Wayne, PA.

  • Collee JG, Fraser AG, Marmion BP, Simmons A (1996) Mackie & MC Cartney practical medical microbiology. 14th edn. The English Language book society and Churchill Livingstone. Ediunburgh, NewYork, pp 345–349

  • Couri MS, Pont AC, Penny ND (2006) Muscidae (Diptera) from Madagascar: identification keys, descriptions of new species and new records. Proc Calif Acad Sci 57(4):799–923

    Google Scholar 

  • Davies RH, Wray C (1996) Seasonal variations in the isolation of Salmonella typhimurium, Salmonella enteritidis, Bacillus cereus and Clostridium perfringens from environmental samples. Zentralbl Veterinarmed B 43(2):119–127

    CAS  PubMed  Google Scholar 

  • De Jesús AJ, Olsen AR, Bryce JR, Whiting RC (2004) Quantitative contamination and transfer of Escherichia coli from foods by houseflies, Musca domestica L. (Diptera: Muscidae). Int J Food Microbiol 93(2):259–262

    Article  PubMed  Google Scholar 

  • Durden LA, Muller CR (2002) Medical and veterinary entomology, 2nd edn. Academic Press, USA

    Google Scholar 

  • Eelco Franz (2012) STEC in the environment and plants. National Institute for Public Health and the Environment Laboratory for Zoonoses and Environmental Microbiology, NRL - The Netherlands.

  • Gerry AC, Peterson NG, Mullens BA (2007) Predicting and controlling stable flies on California Dairies. University of California. Agriculture and Natural Resources Communication Services. Publication ANR 8258.

  • Goddard J (2008) Infection diseases and arthropods, 2nd edn. Humana Press, USA

    Book  Google Scholar 

  • Graczyk TK, Knight R, Gilman RH, Cranfield MR (2001) The role of non-biting flies in the epidemiology of human infectious diseases. Microbes Infect 3:231–235

    Article  CAS  PubMed  Google Scholar 

  • Habeeb MA, Mahdi MA (2012) Mechanical transmission of bacteria via animal agents true fly species. Adv Stud Biol 4(12):583–591

    Google Scholar 

  • Hannan AM (2010) Prevalence of dipterous flies with veterinary importance in selected sheep’s farms and slaughter houses in Jazan, Saudia Arabia. Egypt Acad J Biol Sci 3(2):63–73

    Google Scholar 

  • Holt PS, Geden CJ, Moore RW, Gast RK (2007) Isolation of Salmonella enterica serovar Enteritidis from houseflies (Musca domestica) found in rooms containing Salmonella serovar Enteritidis-challenged hens. Appl Environ Microbiol 73(19):6030–6035

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jacobs RD, Hogsette JA, Miller RW (2003) Using sticky cards to monitor fly population in poultry houses. University of Florida. IFAS Extension, publication PS7.

  • Kalantar E, Motlagh M, Lordnejad H, Reshamansh N (2008) Prevalence of urinary tract pathogens and antimicrobial susceptibility patterns in children at hospitals in Iran. Iranian J Clin Infect Dis 3(3):149–153

    Google Scholar 

  • Kappel HB, Oliveira AG, Da Silva PR, Pelli A (2013) Non-biting flying insects as carriers of pathogenic bacteria in a Brazilian hospital. Rev Soc Bras Med Trop 46(2):234–236

    Article  PubMed  Google Scholar 

  • Lane RP, Crosskey RW (1993) Medical insects and arachnids. Chapman and Hall, London

    Book  Google Scholar 

  • Levy S (2002) The antibiotic paradox 2nd edn. Perseus Publishing, pp15–56

  • Looft T, Johnson TA, Allen HK, Bayles DO, Alt DP, Stedtfeld RD (2012) In-feed antibiotic effects on the swine intestinal microbiome. Proc Natl Acad Sci U S A 109:1691–1696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Macovei L, Miles B, Zurek L (2008) The potential of house flies to contaminate ready-to-eat food with antibiotic-resistant enterococci. J Food Prot 71(2):435–439

    PubMed  Google Scholar 

  • Mohamed MB (2013) Hygienic control of flies in livestock farms. M.V.Sc., Thesis. Faculty of Veterinary Medicine, Beni-Suef University, Egypt.

  • Marshall BM, Petrowski D, Levy SB (1990) Inter and intraspecies spread of E. coli in a farm environment in the absence of antibiotic usage. Proc Natl Acad Sci U S A 87:6609–6613

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mian LS, Maag H, Tacal JV (2002) Isolation of Salmonella from muscoid flies at commercial animal establishments in San Bernardino County, California. J Vector Ecol 27(1):82–85

    PubMed  Google Scholar 

  • Mullens BA, Lii KS, Meyer JA, Peterson NG, Szijj CE (2006) Behavioural responses of dairy cattle to the stable fly, Stomoxys calcitrans, in an open field environment. Med Vet Entomol 20(1):122–137

    Article  CAS  PubMed  Google Scholar 

  • Nmorsi OPG, Agbozele G, Ukwandu NCD (2007) Some aspects of epidemiology of filth flies: Musca domestica, Musca domestica vicina, Drosophilia melanogaster and associated bacteria pathogens in Ekpoma, Nigeria. Vector Borne Zoonotic Dis 7:107–117

    Article  CAS  PubMed  Google Scholar 

  • Parma AE, Sanz ME, Blanco JE, Blanco J, Viñas MR, Blanco M, Padola NL, Etcheverría AI (2000) Virulence, genotypes and serotypes of verotoxigenic E. coli isolate from cattle and foods in Argentina. Importance in public health. Eur J Epidemiol 16:757–762

    Article  CAS  PubMed  Google Scholar 

  • Rahual P (2013) Effect of Curcuma longa (Turmeric) on biochemical aspects of housefly, Musca domestica (Diptera: Muscidae). IJSRP 3(5):1–3

    Google Scholar 

  • Rahuma N, Ghenghesh KS, Ben Aissa R, Elamaari (2005) Carriage by the housefly (Musca domestica) of multiple-antibiotic-resistant bacteria that are potentially pathogenic to humans, in hospital and other urban environments in Misurata, Libya. Ann Trop Med Parasitol 99(8):795–802

    Article  CAS  PubMed  Google Scholar 

  • Redding LE, Cubas-Delgado F, Sammel MD, Smith G, Galligan DT, Levy MZ, Hennessy S (2014) The use of antibiotics on small dairy farms in rural Peru. Prev Vet Med 113(1):88–95

    Article  CAS  PubMed  Google Scholar 

  • Rivas M, Sosa-Estani S, Rangel J, Caletti MG, Vallés P, Roldán CD, Balbi L, Marsano de Mollar MC, Amoedo D, Miliwebsky E, Chinen I, Hoekstra RM, MeadP GPM (2008) Risk factors for sporadic Shiga toxin-producing Escherichia coli infections in children, Argentina. Emerg Infect Dis 14(5):763–771

    Article  PubMed  PubMed Central  Google Scholar 

  • Sabrosky C (1951) British Museum (Natural History) Ruwenzori Expedition 1934-1935. Chloropidae. British Museum (Natural History), London. 2(7):711–828

  • Shaumar N, Mohammed SK, Mohammed SA (1989) Keys for identification of species of family Calliphoridae (Diptera) in Egypt. J Egypt Soc Parasitol 19(2):669–681

    CAS  PubMed  Google Scholar 

  • Shears P (2000) Antimicrobial resistance in the tropics. Trop Doct 30(2):114–116

    CAS  PubMed  Google Scholar 

  • Sojka WJ (1965) E.coli in domestic animals and poultry. Fanham Royal Commonwealth Agriculture Bureax. PP.34–41.

  • Tian L, Cao C, He L, Li M, Zhang L, Zhang L, Liu H, Liu N (2011) Autosomal interactions and mechanisms of pyretoid resistance in house flies, Musca domestica. Int J Biol Sci 7(6):902–911

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wall R, Shearer D (2001) Veterinary ectoparasites: biology, pathology and control, 2nd edn. Blackwell Science Ltd, USA

    Book  Google Scholar 

  • Ward MJ, Gibbons CL, McAdam PR, Van Bunnik BAD, Girvan EK, Edwards GF, Fitzgerald JR, Woolhouse MEJ (2014) Time-scaled evolutionary analysis of the transmission and antibiotic resistance dynamics of Staphylococcus aureus clonal complex 398. Appl Environ Microbiol 80(23):7275–7282

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Werber D, Beutin L, Pichner R, Stark K, Fruth A (2008) Shiga toxin- producing Escherichia coli serogroups in food and patients, Germany. Emerg Infect Dis 14(11):1803–1806

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhu YG, Johnson TA, Su JQ, Qiao M, Guo GX, Stedtfeld RD, Hashsham SA, Tiedje JM (2013) Diverse and abundant antibiotic resistance genes in Chinese swine farms. Proc Natl Acad Sci U S A 110(9):3435–3440

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zurek L, Ghosh A (2014) Insects represent a link between food animal farms and the urban environment for antibiotic resistance traits. Appl Environ Microbiol 80:3562–3567

    Article  PubMed  PubMed Central  Google Scholar 

  • Zurek L, Schal C (2004) Evaluation of the German cockroach (Blattella germanica) as a vector for verotoxigenic Escherichia coli F18 in confined swine production. Vet Microbiol 101(4):263–267

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Authors thank all members of the livestock farm and the Faculty of Veterinary Medicine, Beni-Suef University for their help and support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Khaled Mohamed El-Dakhly.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohammed, A.N., Abdel-Latef, G.K., Abdel-Azeem, N.M. et al. Ecological study on antimicrobial-resistant zoonotic bacteria transmitted by flies in cattle farms. Parasitol Res 115, 3889–3896 (2016). https://doi.org/10.1007/s00436-016-5154-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5154-7

Keywords

Navigation