Abstract
Cystic echinococcosis, due to Echinococcus granulosus sensu lato (s. l.), currently affects three million people, especially in low-income countries and results in high livestock production loss. DNA-based methods demonstrated genetic variability of E. granulosus s. l., and five species were recognized to belong to the complex, including E. granulosus sensu stricto (s.s) (genotypes G1–G3), Echinococcus equinus (genotype G4), Echinococcus ortleppi (genotype G5), Echinococcus canadensis (genotypes G6–G10), and the lion strain Echinococcus felidis. The characterization of Echinococcus species responsible for human and animal echinococcosis is crucial to adapt the preventive measures against this parasitic disease. The sequencing approach is the gold standard for genotyping assays. Unfortunately, developing countries do not often have access to these techniques. Based on in silico RFLP tools, we described an accurate PCR-RFLP method for Echinococcus spp. characterization. The double digestion with the HaeIII and HinfI restriction enzymes of the PCR product from nad1 gene (1071 bp) led to a clear discrimination between E. granulosus s. l. and most closely related species (Echinococcus shiquicus and Echinococcus multilocularis).
Molecular procedures and phylogenetic analysis confirmed the efficiency and the reproducibility of this simple and fast PCR-RFLP method. This technique is proved useful for fresh/unfixed and FF-PET tissues and enables large-scale molecular epidemiological screening in developing countries.
Similar content being viewed by others
References
Ahmadi N, Dalimi A (2006) Characterization of Echinococcus granulosus isolates from human, sheep and camel in Iran. Infect Genet Evol 6(2):85–90. doi:10.1016/j.meegid.2005.01.005
Battelli G (2009) Echinococcosis: costs, losses and social consequences of a neglected zoonosis. Vet Res Commun 33(Suppl 1):47–52. doi:10.1007/s11259-009-9247-y
Boufana B et al (2013) Development of three PCR assays for the differentiation between Echinococcus shiquicus, E. granulosus (G1 genotype), and E. multilocularis DNA in the co-endemic region of Qinghai-Tibet plateau, China. Am J Trop Med Hyg 88(4):795–802. doi:10.4269/ajtmh.12-0331
Boufana B et al (2014) Genetic variability and haplotypes of Echinococcus isolates from Tunisia. Trans R Soc Trop Med Hyg 108(11):706–14. doi:10.1093/trstmh/tru138
Bowles J, McManus DP (1993) NADH dehydrogenase 1 gene sequences compared for species and strains of the genus Echinococcus. Int J Parasitol 23(7):969–72
Bowles J, Blair D, McManus DP (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasitol 54(2):165–73
Bowles J, Blair D, McManus DP (1994) Molecular genetic characterization of the cervid strain (‘northern form’) of Echinococcus granulosus. Parasitology 109(Pt 2):215–21
Budke CM, Deplazes P, Torgerson PR (2006) Global socioeconomic impact of cystic echinococcosis. Emerg Infect Dis 12(2):296–303. doi:10.3201/eid1202.050499
Cardona GA, Carmena D (2013) A review of the global prevalence, molecular epidemiology and economics of cystic echinococcosis in production animals. Vet Parasitol 192(1-3):10–32. doi:10.1016/j.vetpar.2012.09.027
Chaâbane-Banaoues R, Oudni-M’rad M, Cabaret J, M’rad S, Mezhoud H, Babba H (2015) Infection of dogs with Echinococcus granulosus: causes and consequences in an hyperendemic area. Parasit Vectors 8:231. doi:10.1186/s13071-015-0832-3
Craig PS et al (2007) Prevention and control of cystic echinococcosis. Lancet Infect Dis 7(6):385–94. doi:10.1016/s1473-3099(07)70134-2
Eckert J, Deplazes P (2004) Biological, epidemiological, and clinical aspects of echinococcosis, a zoonosis of increasing concern. Clin Microbiol Rev 17(1):107–35
El Berbri I et al (2015) Knowledge, attitudes and practices with regard to the presence, transmission, impact, and control of cystic echinococcosis in Sidi Kacem Province, Morocco. Infect Dis Poverty 4:48. doi:10.1186/s40249-015-0082-9
Hizem A, et al. (2015) Molecular genotyping of Echinococcus granulosus using formalin-fixed paraffin-embedded preparations from human isolates in unusual tissue sites. J Helminthol:1-5 doi:10.1017/s0022149x15000516
Hüttner M et al (2008) Genetic characterization and phylogenetic position of Echinococcus felidis (Cestoda: Taeniidae) from the African lion. Int J Parasitol 38(7):861–8. doi:10.2016/j.ijpara.2007.10.013
Hüttner M, Siefert L, Mackenstedt U, Romig T (2009) A survey of Echinococcus species in wild carnivores and livestock in East Africa. Int J Parasitol 39(11):1269–76. doi:10.1016/j.ijpara.2009.02.015
Knapp J et al (2011) Phylogenetic relationships within Echinococcus and Taenia tapeworms (Cestoda: Taeniidae): an inference from nuclear protein-coding genes. Mol Phylogenet Evol 61(3):628–38. doi:10.1016/j.ympev.2011.07.022
Lavikainen A, Lehtinen MJ, Meri T, Hirvela-Koski V, Meri S (2003) Molecular genetic characterization of the Fennoscandian cervid strain, a new genotypic group (G10) of Echinococcus granulosus. Parasitology 127(Pt 3):207–15
Le TH, Pearson MS, Blair D, Dai N, Zhang LH, McManus DP (2002) Complete mitochondrial genomes confirm the distinctiveness of the horse-dog and sheep-dog strains of Echinococcus granulosus. Parasitology 124(Pt 1):97–112
Liu C-N et al (2015) Discrimination between E. granulosus sensu stricto, E. multilocularis and E. shiquicus using a multiplex PCR assay. PLoS Negl Trop Dis 9(9):e0004084. doi:10.1371/journal.pntd.0004084
M’rad S et al (2012) Retrospective study of the distribution and the fertility of hydatid cysts in the child in Tunisia. Pathol Biol 60(3):166–169. doi:10.1016/j.patbio.2011.03.002
Manterola C, Benavente F, Melo A, Vial M, Roa JC (2008) Description of Echinococcus granulosus genotypes in human hydatidosis in a region of southern Chile. Parasitol Int 57(3):342–6. doi:10.1016/j.parint.2008.02.005
M’rad S et al (2005) Molecular evidence of ovine (G1) and camel (G6) strains of Echinococcus granulosus in Tunisia and putative role of cattle in human contamination. Vet Parasitol 129(3-4):267–72. doi:10.1016/j.vetpar.2005.02.006
Nakao M, McManus DP, Schantz PM, Craig PS, Ito A (2007) A molecular phylogeny of the genus Echinococcus inferred from complete mitochondrial genomes. Parasitology 134(Pt 5):713–22. doi:10.1017/s0031182006001934
Nakao M, Lavikainen A, Yanagida T, Ito A (2013) Phylogenetic systematics of the genus Echinococcus (Cestoda: Taeniidae). Int J Parasitol 43(12-13):1017–29. doi:10.1016/j.ijpara.2013.06.002
Nakao M, Lavikainen A, Hoberg E (2015) Is Echinococcus intermedius a valid species? Trends Parasitol 31(8):342–3. doi:10.1016/j.pt.2015.04.012
Pestechian N et al (2014) Genetic diversity of Echinococcus granulosus in center of Iran. Korean J Parasitol 52(4):413–8. doi:10.3347/kjp.2014.52.4.413
Romig T, Ebi D, Wassermann M (2015) Taxonomy and molecular epidemiology of Echinococcus granulosus sensu lato. Vet Parasitol 213(3-4):76–84. doi:10.1016/j.vetpar.2015.07.035
Saarma U et al (2009) A novel phylogeny for the genus Echinococcus, based on nuclear data, challenges relationships based on mitochondrial evidence. Parasitology 136(3):317–28. doi:10.1017/s0031182008005453
Sambrook J, Fritsch EF, Maniatis T (1989) Extraction with phenol chloroform In: Press CSHL (ed) Commonly used techniques in molecular cloning, 2d edn. New York, pp E.3-E.4
Santos GB, Espinola SM, Ferreira HB, Margis R, Zaha A (2013) Rapid detection of Echinococcus species by a high-resolution melting (HRM) approach. Parasit Vectors 6(1):327. doi:10.1186/1756-3305-6-327
Scott JC, Stefaniak J, Pawlowski ZS, McManus DP (1997) Molecular genetic analysis of human cystic hydatid cases from Poland: identification of a new genotypic group (G9) of Echinococcus granulosus. Parasitology 114(Pt 1):37–43
Siracusano A, Delunardo F, Teggi A, Ortona E (2012) Host-parasite relationship in cystic echinococcosis: an evolving story. Clin Dev Immunol 2012:639362. doi:10.1155/2012/639362
Spotin A (2015) Echinococcus shiquicus and Echinococcus felidis. In: Rodriguez-Morales A (ed) Current topics in echinococcosis., IntTech. ISBN 978-953-51-2159-6
Spotin A, Gholami S, Nasab AN, Fallah E, Oskouei MM, Semnani V, Shariatzadeh SA, Shahbazi A (2015) Designing and conducting in silico analysis for identifying of Echinococcus spp. with discrimination of novel haplotypes: an approach to better understanding of parasite taxonomic. Parasitol Res 114(4):1503–9. doi:10.1007/s00436-015-4334-1
Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–9. doi:10.1093/molbev/msr121
Thompson RC (2008) The taxonomy, phylogeny and transmission of Echinococcus. Exp Parasitol 119(4):439–46. doi:10.1016/j.exppara.2008.04.016
Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22(22):4673–80
Tigre W et al (2016) Molecular characterization of Echinococcus granulosus s. l. cysts from cattle, camels, goats and pigs in Ethiopia. Vet Parasitol 215:17–21. doi:10.1016/j.vetpar.2015.10.022
Torgerson PR, Budke CM (2003) Echinococcosis—an international public health challenge. Res Vet Sci 74(3):191–202
Vincze T, Posfai J, Roberts RJ (2003) NEBcutter: a program to cleave DNA with restriction enzymes. Nucleic Acids Res 31(13):3688–91
Wassermann M, Mackenstedt U, Romig T (2014) A loop-mediated isothermal amplification (LAMP) method for the identification of species within the Echinococcus granulosus complex. Vet Parasitol 200(1-2):97–103. doi:10.1016/j.vetpar.2013.12.012
Xiao N et al (2006) Dual infection of animal hosts with different Echinococcus species in the eastern Qinghai-Tibet plateau region of China. Am J Trop Med Hyg 75(2):292–4
Ye J, Coulouris G, Zaretskaya I, Cutcutache I, Rozen S, Madden TL (2012) Primer-BLAST: a tool to design target-specific primers for polymerase chain reaction. BMC Bioinformatics 13:134. doi:10.1186/1471-2105-13-134
Acknowledgments
This study was supported by the Tunisian Ministry of Higher Education and Scientific Research. The authors thank the following members from the pediatric surgery team of the F. Bourguiba Teaching Hospital for providing the human cyst samples: Pr. Amine ksia, Pr. Rachida Laamiri, Pr. Mongi Mekki, and Pr. Abdelltif Nouri. We are grateful to the veterinaries from the Municipal Abattoirs of Sousse (Dr. Sofien Zmantar), Gafsa (Dr. Mabrouk Saii), Kasserine (Dr. Naiima Tlili), and Sidi Bouzid (Dr. Hamza Hajlaoui) for collecting the animal cyst samples. We thank Dr. Naglaa Abass (Friedrich-Loeffler-Institute, Greifswald, Germany) for providing the gDNA from the G6 genotype, Dr. Ghalia Boubaker and Pr. Bruno Gottstein (Institute of Parasitology, University of Bern, Switzerland) for the G4, G5, and G7 gDNAs, and Gérald Umhang and Pr. Franck Boué (Anses, National Reference Laboratory for Echinococcus spp., Nancy, France) for the E. multilocularis gDNA. We are grateful to Dr. Sara Mestiri and Pr. Moncef Mokni (Laboratories of Pathological Anatomy and Cytology, F. Hached Sousse Teaching Hospital) for giving the FF-PET isolates. We thank also Gérald Umhang (Anses, National Reference Laboratory for Echinococcus spp., Nancy, France) for critically reading the manuscript. We express our gratitude to Imen Younes for her linguistic assistance. We express our gratitude to Delphine Guillotin (Institute of Cancer Research in London) for the last check of the manuscript.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Disclosure of potential conflicts of interest
The authors declare that they have no conflict of interest.
Funding source
This study was funded by the Tunisian Ministry of Higher Education and Scientific Research. The funding source is not involved in the study design; in the collection, analysis, and interpretation of the data; in the writing of the report; and in the decision to submit the article for publication.
Research involving human participants and animals
In this study, the human hydatid cyst sampling was approved by the ethic committee of the F. Bourguiba Teaching Hospital of Monastir (Tunisia). The cysts isolated from animals were collected during post-mortem examination following inspection by the veterinary officers at the respective slaughterhouses with their due consent. No experimentation was done on animals; therefore, no approval from institutional animal ethics committee was required.
Rights and permissions
About this article
Cite this article
Chaâbane-Banaoues, R., Oudni-M’rad, M., M’rad, S. et al. A novel PCR-RFLP assay for molecular characterization of Echinococcus granulosus sensu lato and closely related species in developing countries. Parasitol Res 115, 3817–3824 (2016). https://doi.org/10.1007/s00436-016-5143-x
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00436-016-5143-x