Skip to main content
Log in

Molecular phylogeny of Cyclophyllidea (Cestoda: Eucestoda): an in-silico analysis based on mtCOI gene

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Order Cyclophyllidea (of cestode platyhelminths) has a rich diversity of parasites and includes many families and species that are known to cause serious medical condition in humans and domestic and wild animals. Despite various attempts to resolve phylogenetic relationships at the inter-family level, uncertainty remains. In order to add resolution to the existing phylogeny of the order, we generated partial mtCO1 sequences for some commonly occurring cyclophyllidean cestodes and combined them with available sequences from GenBank. Phylogeny was inferred taking a total 83 representative species spanning 8 families using Bayesian analysis. The phylogenetic tree revealed Dilepididae as the most basal taxon and showed early divergence in the phylogenetic tree. Paruterinidae, Taeniidae and Anoplocephalidae showed non-monophyletic assemblage; our result suggests that the family Paruterinidae may represent a polyphyletic group. The diverse family Taeniidae appeared in two separate clades; while one of them included all the members of the genus Echinococcus and also Versteria, the representatives of the genera Taenia and Hydatigera clubbed in the other clade. A close affinity of Dipylidiidae with Taenia and Hydatigera was seen, whereas existence of a close relationship between Mesocestoididae and Echinococcus (of Taeniidae) is also demonstrated. The crown group comprised the families Anoplocephalidae, Davaineidae, Hymenolepididae and Mesocestoididae, and also all species of the genus Echinococcus and Versteria mustelae; monophyly of these families (excepting Anolplocephalidae) and the genus Echinococcus as well as its sister-taxon relation with V. mustelae is also confirmed. Furthermore, non-monophyly of Anoplocephalidae is suggested to be correlated with divergence in the host selection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Biswal DK, Chatterjee A, Bhattacharya A, Tandon V (2014) The mitochondrial genome of Paragonimus werstermani (Kerbert, 1878), the Indian isolate of the lung fluke representative of the family Paragonimidae (Trematoda). Peer Journal 2:e484

    Article  Google Scholar 

  • Bona FV (1994) Family Dilepididae Railliet & Henry, 1909. In: Khalil LF, Jones A, Bray RA (eds) Keys to the cestode parasites of vertebrates. CAB International, Wallingford, pp 443–554

    Google Scholar 

  • Bowles J, Blair D, McManus DP (1992) Genetic variants within the genus Echinococcus identified by mitochondrial DNA sequencing. Mol Biochem Parasit 54(2):165–173

    Article  CAS  Google Scholar 

  • Brooks DR, Hoberg EP, Weekes PJ (1991) Preliminary phylogenetic systematic analysis of the major lineages of the Eucestoda (Platyhyhelminthes: Cercomeria). Proc Biol Soc Wash 104(4):651–668

    Google Scholar 

  • Caira JN, Jensen K, Waeschenbach A, Olson PD, Littlewood DTJ (2014) Orders out of chaos—molecular phylogenetics reveals the complexity of shark and stingray tapeworm relationships. Int J Parasitol 44:55–73

    Article  CAS  PubMed  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2012) jModelTest 2: more models, new heuristics and parallel computing. Nat Methods 9(8):772

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Foronda P, Casanova JC, Valladares B, Martinez E, Feliu C (2004) Molecular systematics of several cyclophyllid families (Cestoda) based on the analysis of 18S ribosomal DNA gene sequences. Parasitol Res 93:279–282

    Article  CAS  PubMed  Google Scholar 

  • Georgiev BB (2003) Cestoda (tapeworms). In: Thoney DA, Schlager N (eds) Lower metazoans and lesser deuterostomes, vol 1, 2nd edn, Grzimek’s Animal Life Encyclopedia. Gale, Detroit, pp 225–243

    Google Scholar 

  • Ghatani S, Jollin JA, Roy B, Tandon V (2014) Multilocus sequence evaluation for differentiating species of the trematode family Gastrothylacidae, with a note on the utility of mitochondrial COI motifs in species identification. Gene 548:277–284

    Article  CAS  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for windows 95/98/NT. Nucleic Acids Symposium Series. Oxford University Press 41:95–98

    CAS  Google Scholar 

  • Hoberg EP, Marlaux J, Justine JL, Brooks DR, Weekes PJ (1997) Phylogeny of the orders of the eucestoda (Cermomeromorphae) based on comparative morphology: historical perspectives and a new working hypotheseis. J Parasitol 83(6):1128–1147

    Article  CAS  PubMed  Google Scholar 

  • Hoberg EP, Jones A, Bray RA (1999) Phylogenetic analysis among the families of the cyclophyllidea (Eucestoda) based on comparative morpholology, with new hypotheses for co-evolution in vertebrates. Syst Parasitol 42:51–73

    Article  CAS  PubMed  Google Scholar 

  • Hu M, Gasser RB, Chilton NB, Beveridge I (2005) Genetic variation in mitochondrial cytochrome c oxidase subunit 1 within three species of Progamotaenia (Cestoda: Anolplocephalidae) from macropodid marsupials. Parasitology 130:117–129

    Article  CAS  PubMed  Google Scholar 

  • Jia W, Yan H, Lou Z, Ni X, Dyachenko V, Li H, Littlewood DT (2012) Mitochondrial genes and genomes support a cryptic species of tapeworm within Taenia taeniaeformis. Acta Trop 123:154–163

    Article  CAS  PubMed  Google Scholar 

  • Knapp J, Nakao M, Yanagida T, Okamoto M, Saarma U, Lavikainen A, Ito A (2011) Phylogenetic relationships within Echinococcus and Taenia tapeworms (Cestoda: Taeniidae): an inference from nuclear protein-coding genes. Mol Phylogenet Evol 61:628–638

    Article  PubMed  Google Scholar 

  • Lee SU, Chun HC, Huh S (2007) Molecular phylogeny of parasitic Platyhelminthes based on sequences of partial 28S rDNA D1 and mitochondrial cytochrome c oxidase subunit 1. Korean J Parasitol 45:181–189

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Littlewood DTJ, Waeschenbach A, Nikolov PN (2008) In search of mitochondrial marker for resolving the phylogeny of cyclophyllidean tapeworms (Platyhelminthes, Cestoda) a test study with Davaineidae. Acta Parasitol 53(2):133–144

    Article  CAS  Google Scholar 

  • Liu GH, Li C, Li JY, Zhou DH, Xiong RC, Lin RQ, Zou FC, Zhu XQ (2012) Characterization of the complete mitochondrial genome sequence of Spirometra erinaceeuropaei (Cestoda: Diphyllobothriidae) from China. Int J Biol Sci 8:640–649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu GH, Yan HB, Otranto D, Wang XY, Zhao GH, Jia WZ, Zhu XQ (2014) Dicrocoelium chinensis and Dicrocoelium dendriticum (Trematoda: Digenea) are distinct lancet fluke species based on mitochondrial and nuclear ribosomal DNA sequences. Mol Phylogenet and Evol 79:325–331

    Article  Google Scholar 

  • Mariaux J (1996) Cestode systematics: any progress? Int J Parasitol 26:231–243

    Article  CAS  PubMed  Google Scholar 

  • Nakao M, Lavikainen A, Iwaki T, Haukisalmi V, Konyaev S, Oku Y, Okamoto M, Ito A (2013) Molecular phylogeny of the genus Taenia (Cestoda: Taeniidae): proposals for the resurrection of Hydatigera Lamarck, 1816 and the creation of a new genus Versteria. Int J Parasitol 43:427–437

    Article  CAS  PubMed  Google Scholar 

  • Ronquist F, Teslenko M, van der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L, Suchard MA, Huelsenbeck JP (2012) MrBayes 3.2: efficient bayesian phylogenetic inference and model choice across a large model space. Syst Biol 61:539–542

    Article  PubMed  PubMed Central  Google Scholar 

  • Sambrook J, Russell DW (2001) Preparation and analyses of eukaryotic genomic DNA in molecular cloning: a laboratory manual, 3rd edn. Cold Spring Harbor Laboratory Press, New York, pp 1.51–1.54

    Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tandon V, Biswal DK, Prasad PK, Malsawmtluangi C (2010) Reconstructing the phylogenetic relationships of the cyclophyllidean cestodes: a case study using ITS2 rDNA and sequence structure alignment. In: Fred A, Filipe J, Gamboa H (eds) Biomedical engineering systems and technologies, vol 127, BIOSTEC 2010, CCIS. Springer, Berlin, pp 309–321

    Chapter  Google Scholar 

  • von Nickisch-Rosenegk M, Lucius R, Loss-Frank B (1999) Contributions to the phylogeny of the Cyclophyllidea (Cestoda) inferred from mitochondial 12S rDNA. J Mol Evol 48:586–596

    Article  Google Scholar 

  • Wickstrom LM, Haukisalmi V, Varis S, Hantula J, Henttonen H (2005) Molecular phylogeny and systematics of anoplocephaline cestodes in rodents and lagomorphs. Syst Parasitol 62:83–99

    Article  PubMed  Google Scholar 

  • World Health Organization (WHO) (2010) Working to overcome the global impact of neglected tropical diseases. First WHO report on neglected diseases. WHO Publications, Geneva, pp 107–111

    Google Scholar 

  • World Health Organization, Sustainable Development and Healthy Environment, Food Safety and Zoonoses (WHO, SDE, FOS) (2006) The control of neglected zoonotic diseases: a route to poverty alleviation. Report of a joint WHO/DFID/-AHP meeting with a participation of FAO and OIE. WHO Press, WHO publications Geneva

    Google Scholar 

  • Xiao N, Yao JW, Ding W, Giraudoux P, Craig PS, Ito A (2013) Priorities for research and control of cestode zoonoses in Asia. Infect Dis Poverty 2:16

    Article  PubMed  PubMed Central  Google Scholar 

  • Yan H, Lou Z, Li L, Ni X, Guo A, Li H, Zheng Y, Dyachenko V, Jia W (2013a) The nuclear 18S ribosomal RNA gene as a source of phylogenetic information in the genus Taenia. Parasitol Res 112:1343–1347

    Article  PubMed  Google Scholar 

  • Yan HB, Wang XY, Lou ZZ, Li L, Blair D, Yin H, Cai JZ, Dai XL, Lei MT, Zhu XQ, Cai XP, Jia WZ (2013b) The mitochondrial genome of Paramphistomum cervi (Digenea), the first representative for the family Paramphistomidae. PLoS One 8:e71300

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgments

The study was supported by The Indian Council of Medical Research (ICMR)-sponsored project “Molecular characterization of food-borne trematodes and cestodes prevailing in Northeast India,” sanctioned to V.T. and B.R. et al., Departmental Special Assistance (University Grants Commission (UGC)-Special Assistance Programme) in Zoology at North-Eastern Hill University (NEHU), Shillong. The use of facilities at the Bioinformatics Centre, NEHU is thankfully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Veena Tandon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharma, S., Lyngdoh, D., Roy, B. et al. Molecular phylogeny of Cyclophyllidea (Cestoda: Eucestoda): an in-silico analysis based on mtCOI gene. Parasitol Res 115, 3329–3335 (2016). https://doi.org/10.1007/s00436-016-5092-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5092-4

Keywords

Navigation