Parasitology Research

, Volume 115, Issue 8, pp 3203–3208 | Cite as

Multiple infection of amber Succinea putris snails with sporocysts of Leucochloridium spp. (Trematoda)

  • G. L. Ataev
  • A. A. Zhukova
  • А. S. Tokmakova
  • Е. E. Prokhorova
Original Paper

Abstract

Amber Succinea putris snails were collected in the Leningrad Region (Russia). Some of them were infected with trematodes Leucochloridium paradoxum, Leucochloridium perturbatum and Leucochloridium vogtianum. One snail had triple infection with all these species. Genotyping of sporocysts by ITS1–5.8S–ITS2 nucleotide sequences of ribosomal DNA (rDNA) and phylogenetic analysis were performed. The results confirmed the species identification of sporocysts of Leucochloridium based on the shape and colour of mature broodsacs. Sporocyst broodsacs could leave the host snail on their own, remaining viable in the environment for up to an hour. This ability of sporocysts may prevent the excessive infection of the molluscan host.

Keywords

Leucochloridium trematodes Broodsacs of sporocysts Multiple infection ITS1–5.8S–ITS2 rDNA genotyping 

References

  1. Ataev GL, Dobrovolskij AA (1992) Development of microhemipopulation of Philophtalmus rhionica rediae in molluscs naturally infected with other species of trematodes. Parazitologya 26:227–233Google Scholar
  2. Ataev GL, Tokmakova AS (2015) Seasonal changes in the biology of Leucochloridium paradoxum (Trematoda, Leucochloridiomorphidae). Parazitologya 49:200–207Google Scholar
  3. Ataev GL, Babich PS, Tokmakova AS (2013) The study of the sporocyst broodsacs coloring in Leucochloridium paradoxum (Trematoda: Brachylaemidae). Parazitologya 47:372–379Google Scholar
  4. Bakke TA (1982) Histology and biology of the larval stages of Leucochloridium Carus, 1835 (Trematoda, Digenea) as revealed by light and electron microscopy. Fauna Norv Ser A 3:41–56Google Scholar
  5. Baudon A (1881) Troisième supplement à la monographie des Succinées françaises. J Conch 29:139–154Google Scholar
  6. Casey SP, Bakke TA, Harris PD, Cable J (2003) Use of ITS rDNA for discrimination of European green- and brown-banded sporocysts within the genus Leucochloridium Carus, 1835 (Digenea: Leucochloriidae). Syst Parasitol 5:163–168. doi:10.1023/B:SYPA.0000003809.15982.ca CrossRefGoogle Scholar
  7. Combes C (1995) Interactions durables: écologie et évolution du parasitisme. Masson, ParisGoogle Scholar
  8. Fernandez J, Esch GW (1991) The component community structure of larval trematodes in the pulmonate snail Helisoma anceps. J Parasitol 77:540–550. doi:10.2307/3283157 CrossRefPubMedGoogle Scholar
  9. Fried B, Lewis P, Beers K (1995) Thin-layer chromatographic and histochemical analyses of neutral lipids in the intramolluscan stages of Leucochloridium variae (Digenea, Leucochloridiidae) and the snail host, Succinea ovalis. J Parasitol 81:112–114. doi:10.2307/3284019 CrossRefPubMedGoogle Scholar
  10. Ginetsinskaya TA (1953) Importance of color of sporocyst of trematodes of the genus Leucochloridium in determining the species. Dokl Akad Nauk SSSR 88:177–179, in Russian Google Scholar
  11. Ginetsinskaya TA (1964) The questions of ecology and systematics of Leucochloridium parthenogenetic generation. Trudy Leningradskogo obscestva Estestvoispytatelej 72:38–56 (in Russian) Google Scholar
  12. Ginetsinskaya TA (1988) Trematodes, their life cycles, biology and evolution. Amerind Publishing Company, Pvt, New DelhiGoogle Scholar
  13. Hotenovskij IA (1963) On the fauna of Trematoda of birds in the Leningrad region. In: Pavlovskij E (ed) Parasitological collection. Academy of Science USSR, Moscow, pp 203–208Google Scholar
  14. Jackiewicz M (1982) Leucochloridium vogtianum Baudon, 1881 (Trematoda) new for the Hungarian fauna. Miscnea zool hung 1:25–26Google Scholar
  15. Kimura M (1980) A simple method for estimating evolutionary rate of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120CrossRefPubMedGoogle Scholar
  16. Kumar S, Tamura S, Nei M (2004) MEGA3: integrated software for molecular genetics analysis and sequence alignment. Brief Bioinform 5:150–163. doi:10.1093/bib/5.2.150 CrossRefPubMedGoogle Scholar
  17. Kuris A (1990) Guild structure of larval trematodes in molluscan hosts: prevalence, dominance and significance of competition. In: Esch G, Bush A, Aho J (eds) Parasites communities, patterns and processes. Chapman and Hall, Springer, Netherlands, pp 69–100. doi:10.1007/978-94-009-0837-6_4 CrossRefGoogle Scholar
  18. Michot B, Despres L, Bonhomme F, Bachellerie JP (1993) Conserved secondary structures in the ITS2 of trematode pre-rRNA. FEBS Lett 316:247–252. doi:10.1016/0014-5793(93)81301-F CrossRefPubMedGoogle Scholar
  19. Morgan JA, Blair D (1998) Trematode and monogenean rRNA ITS2 secondary structures support a four-domain model. J Mol Evol 47:406–419. doi:10.1007/PL00006398 CrossRefPubMedGoogle Scholar
  20. Olson PD, Cribb TH, Tkach VV, Bray RA, Littlewood DTJ (2003) Phylogeny and classification of the Digenea (Platyhelminthes: Trematoda). Int J for Parasitol 33:733–755. doi:10.1016/S0020-7519(03)00049-3 CrossRefGoogle Scholar
  21. Pojmanska T (1962) On sporocysts of the genus Leucochloridium in Poland. Acta Parasitol Pol 10:369–376Google Scholar
  22. Posada D, Crandall KA (1998) Modeltest: testing the model of DNA substitution. Bioinformatic 14:817–818. doi:10.1093/bioinformatics/14.9.817 CrossRefGoogle Scholar
  23. Rietschel G (1972) Untersuchungen über Farbmuster-Typen bei Leucochloridium Sporocysten (Trematoda, Brachylaemidae) und deren Zugehörigkeit zu bestimmten Arten. Z Parasitenkd 40:61–68. doi:10.1007/BF00329616 CrossRefPubMedGoogle Scholar
  24. Sambrook J, Russel DW (2001) Molecular cloning: a laboratory manual. Cold Spring Harbor, New YorkGoogle Scholar
  25. Sousa WP (1990) Spatial scale and the processes structuring a guild of larval trematode parasites. In: Esch G, Bush A, Aho J (eds) Parasites communities, patterns and processes. Chapman and Hall, Springer, Netherlands, pp 41–67. doi:10.1007/978-94-009-0837-6_3 CrossRefGoogle Scholar
  26. Wesenberg-Lund C (1931) Contributions to the development of the Trematoda Digenea. I. The biology of Leucochloridium paradoxum. D Kgl Dansk Vidensk Selsk Skrifter Naturw Math Afd 4:90–142Google Scholar
  27. Woodhead E (1935) The mother sporocysts of Leucochloridium. J Parasitol 21:337–346. doi:10.2307/3271943 CrossRefGoogle Scholar
  28. Woodhead E (1936) An extraordinary case of multiple infection with the sporocysts of Leucochloridium. J Parasitol 22:227–228CrossRefGoogle Scholar
  29. Zdarska Z, Soboleva TN, Osipovskaya LL (1982) Ultrastructure of the tegument and associated structures of Leucochloridium paradoxum sporocyst and metacercaria. Folia Parasitol 29:247–251Google Scholar
  30. Zhukova AA, Prokhorova EE, Tsymbalenko NV, Tokmakova AS, Ataev GL (2012) Molecular genetic analysis of trematodes Leucochloridium sp. from Leningrad Province. Parazitologiya 46:414–419Google Scholar
  31. Zhukova AA, Prokhorova EE, Tokmakova AS, Tsymbalenko NV, Ataev GL (2014) Identification of species Leucochloridium paradoxum and L. perturbatum (Trematoda) based on rDNA sequences. Parazitologiya 48:185–192Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • G. L. Ataev
    • 1
  • A. A. Zhukova
    • 1
  • А. S. Tokmakova
    • 1
  • Е. E. Prokhorova
    • 1
  1. 1.Laboratory of Experimental Zoology, Department of Zoology, Faculty of BiologyHerzen State Pedagogical University of RussiaSaint PetersburgRussian Federation

Personalised recommendations