Parasitology Research

, Volume 115, Issue 8, pp 3185–3195 | Cite as

Antiplasmodial activity of selected medicinal plants used to treat malaria in Ghana

  • Gustav KomlagaEmail author
  • Sandrine Cojean
  • Rita A. Dickson
  • Mehdi A. Beniddir
  • Soulaf Suyyagh-Albouz
  • Merlin L. K. Mensah
  • Christian Agyare
  • Pierre Champy
  • Philippe M. LoiseauEmail author
Original Paper


The use of medicinal plants for the treatment of diseases including malaria is commonplace in Ghanaian traditional medicine, though the therapeutic claims for most plants remain unvalidated. Antiplasmodial activity of the aqueous extracts and successively obtained petroleum ether, ethyl acetate and methanol fractions of the whole Phyllanthus fraternus plant, the leaves of Tectona grandis, Terminalia ivorensis and Bambusa vulgaris, and roots of Senna siamea were studied against Plasmodium falciparum chloroquine-sensitive 3D7 and chloroquine-resistant W2 strains. The aqueous extracts were assessed against human umbilical vein endothelial cells (HUVECs) for cytotoxicity, and the organic solvent fractions against human O+ erythrocytes for haemolytic effect. Both extracts and fractions demonstrated antiplasmodial activity to varied extents. The aqueous extract of T. ivorensis was the most active (3D7, IC50 0.64 ± 0.14; and W2, IC50 10.52 ± 3.55 μg/mL), and together with P. fraternus displayed cytotoxicity (CC50 6.25 ± 0.40 and 31.11 ± 3.31 μg/mL, respectively). The aqueous extracts were generally selective for 3D7 strain of P. falciparum (selectivity indexes (SIs) ≥3.48) but only that of S. siamea was selective for the W2 strain (SI > 2.1). The organic solvent fractions also displayed antiplasmodial activity with the methanol fractions of P. fraternus and T. grandis, and the fractions of B. vulgaris showing activity with IC50 below 1 μg/mL against P. falciparum 3D7 strain; some fractions showed haemolytic effect but with low to high selectivity indexes (SI ≥ 4). The results while justifying the traditional use of the plant materials in the treatment of malaria, however, suggest their cautious use.


Chloroquine-resistant Plasmodium falciparum Bambusa vulgaris Phyllanthus fraternus Tectona grandis Terminalia ivorensis Senna siamea Traditional medicine 



We gratefully acknowledge the French Embassy in Ghana for facilitating the offer of the French Government scholarship to GK for the study at the Faculté de Pharmacie, Université Paris-Sud, France. The support of the Campus France and the Government of Ghana is highly appreciated.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no competing interests.


  1. Abbiw DK (1990) Useful plants of Ghana. Royal Botanic Gardens, KewCrossRefGoogle Scholar
  2. Agyare C, Asase A, Lechtenberg M, Niehues M, Deters A, Hensel A (2009) An ethnopharmacological survey and in vitro confirmation of ethnopharmacological use of medicinal plants used for wound healing in Bosomtwi-Atwima-Kwanwoma area, Ghana. J Ethnopharmacol 125(3):393–403. doi: 10.1016/j.jep.2009.07.024 CrossRefPubMedGoogle Scholar
  3. Ajaiyeoba E, Oladepo O, Fawole O et al (2003) Cultural categorization of febrile illnesses in correlation with herbal remedies used for treatment in Southwestern Nigeria. J Ethnopharmacol 85(2-3):179–185. doi: 10.1016/S0378-8741(02)00357-4 CrossRefPubMedGoogle Scholar
  4. Annan K, Sarpong K, Asare C et al (2012) In vitro anti-plasmodial activity of three herbal remedies for malaria in Ghana: Adenia cissampeloides (Planch.) Harms. Terminalia ivorensis A. Chev, and Elaeis guineensis Jacq. Pharmacogn Res 4(4):225–229. doi: 10.4103/0974-8490.102270 CrossRefGoogle Scholar
  5. Asase A, Asafo-Agyei T (2011) Plants used for treatment of malaria in communities around the Bobiri forest reserve in Ghana. J Herbs Spices Med Plants 17(2):85–106. doi: 10.1080/10496475.2011.581132 CrossRefGoogle Scholar
  6. Asase A, Oppong-Mensah G (2009) Traditional antimalarial phytotherapy remedies in herbal markets in southern Ghana. J Ethnopharmacol 126(3):492–499. doi: 10.1016/j.jep.2009.09.008 CrossRefPubMedGoogle Scholar
  7. Asase A, Akwetey GA, Achel DG (2010) Ethnopharmacological use of herbal remedies for the treatment of malaria in the Dangme West District of Ghana. J Ethnopharmacol 129(3):367–76. doi: 10.1016/j.jep.2010.04.001 CrossRefPubMedGoogle Scholar
  8. Asif M (2011) In vivo analgesic and antiinflammatory effects of Tectona grandis Linn. stem bark extracts. Malays J Pharm Sci 9(1):1–11Google Scholar
  9. Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114(8):2801–2805. doi: 10.1007/s00436-015-4586-9 CrossRefPubMedGoogle Scholar
  10. Benelli G, Mehlhorn H (2016) Declining malaria, rising dengue and Zika virus: insights for mosquito vector control. Parasitol Res. doi: 10.1007/s00436-016-4971-z Google Scholar
  11. Brink M (2008) Bambusa vulgaris schrad. ex J.C.Wendl. In Louppe D, Oteng-Amoako AA, Brink M (Eds). Prota 7(1): Timbers/Bois d’oeuvre 1. [CD-Rom]. PROTA, Wageningen, Netherlands. vulgaris_En.htm. Accessed 10 Dec 2014
  12. Bukar A, Mukhtar M, Hassan A (2009) Phytochemical screening and antibacterial activity of leaf extracts of Senna siamea (Lam) on Pseudomonas aeruginosa. Bayero J Pure Appl Sci 2(1):139–142Google Scholar
  13. Burkill HM (1985) The useful plants of west tropical Africa, vol 2. Royal Botanic Gardens, KewGoogle Scholar
  14. Bystriakova N, Kapos V, Lysenko I (2002) Potential distribution of woody bamboos in Africa and America. UNEP world conservation monitoring centre (UNEP-WCMC), Cambridge, 1–43. Working paper. Accessed 20 June 2015
  15. Carey W, Dasi JB, Rao N, Gottumukkala K (2009) Anti-inflammatory activity of methanolic extract of Bambusa vulgaris leaves. Int J Green Pharm. doi: 10.4103/0973-8258.56282 Google Scholar
  16. Chanda S, Keneria M, Vaghesiya YK (2011) Evaluation of antimicrobial potential of some Indian medicinal plants against some pathogenic microbes. Indian J Nat Prod Resour 2:225–228Google Scholar
  17. Chopade AR, Sayyad FJ (2013) Antinociceptive effect of Phyllanthus fraternus extract in complete Freund’s adjuvant induced chronic pain in mice. Biomedicine Aging Pathol 3(4):235–240. doi: 10.1016/j.biomag.2013.09.001 CrossRefGoogle Scholar
  18. Deguchi J, Hirahara T, Hirasawa et al (2012) New tricyclic alkaloids, cassiarins G, H, J, and K from leaves of Cassia siamea. Chem Pharm Bull (Tokyo) 60(2):219–22CrossRefGoogle Scholar
  19. Diallo A, Gbeassor M, Vovor A et al (2008) Effect of Tectona grandis on phenylhydrazine-induced anaemia in rats. Fitoterapia 79(5):332–6. doi: 10.1016/j.fitote.2008.02.005 CrossRefPubMedGoogle Scholar
  20. Diallo A, Traore MS, Keita SM, Balde MA et al (2012) Management of diabetes in Guinean traditional medicine: an ethnobotanical investigation in the coastal lowlands. J Ethnopharmacol 144(2):353–61. doi: 10.1016/j.jep.2012.09.020 CrossRefPubMedGoogle Scholar
  21. Ekasari W, Widyawaruyanti A, Zaini NC, Syafruddin D, Honda T, Morita H (2009) Antimalarial activity of cassiarin A from the leaves of Cassia siamea. Heterocycles 78(7):1831–1836. doi: 10.3987/COM-09-11680 CrossRefGoogle Scholar
  22. Foli E (2009) Terminalia ivorensis A.Chev. In: Lemmens, RHMJ, Louppe D, Oteng-Amoako AA (Eds). Prota 7(2): Timbers/Bois d’œuvre 2. Wageningen, NetherlandsGoogle Scholar
  23. Ghaisas M, Navghare V, Takawale A, Zope V, Tanwar M, Deshpande A (2009) Effect of Tectona grandis Linn. on dexamethasone-induced insulin resistance in mice. J Ethnopharmacol 122(2):304–7. doi: 10.1016/j.jep.2009.01.008 CrossRefPubMedGoogle Scholar
  24. Houghton PJ, Howes MJ, Lee CC, Steventon G (2007) Uses and abuses of in vitro tests in ethnopharmacology: visualizing an elephant. J Ethnopharmacol 110(3):391–400. doi: 10.1016/j.jep.2007.01.032 CrossRefPubMedGoogle Scholar
  25. Ilić N, Novković M, Guida F, Xhindoli D, Benincasa M, Tossi A, Juretić D (2013) Selective antimicrobial activity and mode of action of adepantins, glycine-rich peptide antibiotics based on anuran antimicrobial peptide sequences. Biochim Biophys Acta 1828(3):1004–12. doi: 10.1016/j.bbamem.2012.11.017 CrossRefPubMedGoogle Scholar
  26. Iwu MM, Anyanwu BN (1982) Phytotherapeutic profile of Nigerian herbs I: anti-inflammatory and anti-arthritic agents. J Ethnopharmacol 6:263–274CrossRefPubMedGoogle Scholar
  27. Jaybhaye D, Varma S, Bonde V, Gite A (2010) Effect of Tectona grandis stem extract on estradiol benzoate injected uterus of female albinos Wistar rats. Asian J Pharm Clin Res 3(2):123–125Google Scholar
  28. Kaddouri H, Nakache S, Houzé S, Mentré F, Le Bras J (2006) Assessment of the drug susceptibility of Plasmodium falciparum clinical isolates from Africa by using a Plasmodium lactate dehydrogenase immunodetection assay and an inhibitory maximum effect model for precise measurement of the 50-percent inhibitory concentration. Antimicrob Agents Chemother 50(10):3343–9. doi: 10.1128/AAC.00367-06 CrossRefPubMedPubMedCentralGoogle Scholar
  29. Kamagaté M, Koffi C, Kouamé NM, Akoubet A, Alain N, Yao R, Die HM (2014) Ethnobotany, phytochemistry, pharmacology and toxicology profiles of Cassia siamea Lam. Journal of Phytopharmacol 3(1):57–76Google Scholar
  30. Kapoor VP, Milas M, Taravel FR, Rinaudo M (1996) Rheological properties of a seed galactomannan from Cassia siamea Lamk. Food Hydrocoll 10(2):167–172. doi: 10.1016/S0268-005X(96)80031-2 CrossRefGoogle Scholar
  31. Khan AA, Khan AV (2004) Medico-ethnobotanical uses of Phyllanthus fraternus Webst. (Family-Euphorbiaceae) from western Uttar Pradesh, India. J Nat Remedies 4(1):73–76Google Scholar
  32. Khatoon S, Rai V, Rawat AKS, Mehrotra S (2006) Comparative pharmacognostic studies of three Phyllanthus species. J Ethnopharmacol 104(1-2):79–86. doi: 10.1016/j.jep.2005.08.048 CrossRefPubMedGoogle Scholar
  33. Khera N, Bhargava S (2013) Phytochemical and pharmacological evaluation of Tectona grandis Linn. Int J Pharm Pharm Sci 5(3):923–927Google Scholar
  34. Kollert W, Cherubini L (2012) Teak resources and market assessment 2010 (Tectona grandis Linn. F.), Working Paper FP/47/E. Accessed 13 July 2015
  35. Komlaga G, Agyare C, Dickson RA, Mensah MLK, Annan K, Loiseau PM, Champy P (2015a) Medicinal plants and finished marketed herbal products used in the treatment of malaria in the Ashanti region, Ghana. J Ethnopharmacol 172:333–46. doi: 10.1016/j.jep.2015.06.041 CrossRefPubMedGoogle Scholar
  36. Komlaga G, Cojean S, Beniddir MA et al (2015b) The antimalarial potential of three Ghanaian medicinal plants. Herb Med Open Access 1(1):1–6Google Scholar
  37. Kopa TK, Tchinda AT, Tala MF et al (2014) Antiplasmodial anthraquinones and hemisynthetic derivatives from the leaves of Tectona grandis (Verbenaceae). Phytochem Lett 8:41–45. doi: 10.1016/j.phytol.2014.01.010 CrossRefGoogle Scholar
  38. Lans C (2007) Comparison of plants used for skin and stomach problems in Trinidad and Tobago with Asian ethnomedicine. J Ethnobiol Ethnomed. doi: 10.1186/1746-4269-3-3 Google Scholar
  39. Lim TK (2014) Edible medicinal and non-medicinal plants. Springer, Dordrecht. doi: 10.1007/978-94-007-7395-0 CrossRefGoogle Scholar
  40. Magassouba FB, Diallo a, Kouyaté M et al (2010) Corrigendum to “Ethnobotanical survey and antibacterial activity of some plants used in Guinean traditional medicine” [J Ethnopharmocol 114(1) (2007):44–53]. J Ethnopharmacol 128(3): 705–708. 10.1016/j.jep.2008.10.024
  41. Matur B, Matthew T, Ifeanyi C (2009) Analysis of the phytochemical and in vivo antimalarial properties of Phyllanthus fraternus Webster extract. New York Sci J 2(5):12–19Google Scholar
  42. Momin MAM, Rana MS, Khan MR, Emran TB, Hosen SMZ (2012) Antimicrobial and peripherally acting analgesic activity of Senna siamea. Mol Clin Pharmacol 3(2):149–157Google Scholar
  43. Morita H, Oshimi S, Hirasawa Y et al (2007) Cassiarins A and B, novel antiplasmodial alkaloids from Cassia siamea. Org Lett 9(18):3691–3693. doi: 10.1021/ol701623n CrossRefPubMedGoogle Scholar
  44. Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1-2):55–63. doi: 10.1016/0022-1759(83)90303-4 CrossRefPubMedGoogle Scholar
  45. Mshana RN, Abbiw DK, Addae-Mensah I et al (2001) Traditional medicine and pharmacopoeia: contribution to the revision of ethnobotanical and floristic studies in Ghana. Science and Technology Press, CSIR, AccraGoogle Scholar
  46. Murugan K, Panneerselvam C, Samidoss CM et al (2016) In vivo and in vitro effectiveness of Azadirachta indica-synthesized silver nanocrystals against Plasmodium berghei and Plasmodium falciparum, and their potential against malaria mosquitoes. Res Vet Sci. doi: 10.1016/j.rvsc.2016.03.001 PubMedGoogle Scholar
  47. Nagard HL, Vincent C, Mentré F, Le Bras J (2011) Online analysis of in vitro resistance to antimalarial drugs through nonlinear regression. Comput Methods Programs Biomed 104(1):10–8. doi: 10.1016/j.cmpb.2010.08.003 CrossRefPubMedGoogle Scholar
  48. Ndjonka D, Bergmann B, Agyare C et al (2012) In vitro activity of extracts and isolated polyphenols from West African medicinal plants against Plasmodium falciparum. Parasitol Res 111(2):827–834. doi: 10.1007/s00436-012-2905-y CrossRefPubMedGoogle Scholar
  49. Nsonde-Ntandou FG, Banzouzi TJ, Mbatchi B et al (2010) Analgesic and anti-inflammatory effects of Cassia siamea Lam. stem bark extracts. J Ethnopharmacol 127(1):108–11. doi: 10.1016/j.jep.2009.09.040 CrossRefPubMedGoogle Scholar
  50. Nunkoo DH, Mahomoodally MF (2012) Ethnopharmacological survey of native remedies commonly used against infectious diseases in the tropical island of Mauritius. J Ethnopharmacol 143(2):548–64. doi: 10.1016/j.jep.2012.07.013 CrossRefPubMedGoogle Scholar
  51. Nzila A, Mwai L (2009) In vitro selection of Plasmodium falciparum drug-resistant parasite lines. J Antimicrob Chemother 65(3):390–398. doi: 10.1093/jac/dkp449 CrossRefPubMedPubMedCentralGoogle Scholar
  52. Oliver-Bever B (1986) Medicinal plants in tropical West Africa. Cambridge University Press, CambridgeCrossRefGoogle Scholar
  53. Orwa C, Muta A, Kindt R, Jamnads R, Anthony S (2009) Senna siamea. Accessed 25 December 2014
  54. Oseni LA, Amiteye D, Antwi S, Tandoh M, Aryitey GM (2013) Preliminary in vivo evaluation of anti-inflammatory activities of aqueous and ethanolic whole plant extracts of Phyllanthus fraternus on carrageenan-induced paw oedema in Sprague-Dawley rats. JAPHAC 3((03):62–65. doi: 10.7324/JAPS.2013.30312 Google Scholar
  55. Oshimi S, Zaini NC, Deguchi J et al (2009) Cassiarins C-E, antiplasmodial alkaloids from the flowers of Cassia siamea. J Nat Prod 72(10):1899–1901. doi: 10.1021/np9004213 CrossRefPubMedGoogle Scholar
  56. Ouattara LP, Sanon S, Mahiou-Leddet V et al (2014) In vitro antiplasmodial activity of some medicinal plants of Burkina Faso. Parasitol Res 113:405–416. doi: 10.1007/s00436-013-3669-8 CrossRefPubMedGoogle Scholar
  57. Oudhia P (2008) Phyllanthus fraternus G.L.Webster. In: Schmelzer GH, Gurib-Fakim A (eds) Prota 11(1): Medicinal plants/Plantes médicinales 1. PROTA, WageningenGoogle Scholar
  58. Phalan B (2009) Ecology of Bambusa vulgaris. Conservation science group department of zoology university of Cambridge United Kingdom & IUCN/SSC invasive species specialist group (ISSG). Accessed 10 Dec 2014
  59. Philippe G, Angenot L, De Mol P, Goffin E, Hayette MP, Tits M, Frédérich M (2005) In vitro screening of some Strychnos species for antiplasmodial activity. J Ethnopharmacol 97(3):535–9. doi: 10.1016/j.jep.2004.12.011 CrossRefPubMedGoogle Scholar
  60. Rajakumar G, Rahuman AA, Chung IM, Kirthi AV, Marimuthu S, Anbarasan K (2015) Antiplasmodial activity of eco-friendly synthesized palladium nanoparticles using Eclipta prostrata extract against Plasmodium berghei in Swiss albino mice. Parasitol Res 114(4):1397–1406. doi: 10.1007/s00436-015-4318-1 CrossRefPubMedGoogle Scholar
  61. Ramachandran S, Rajini KB, Rajasekaran A, Manisenthil KKT (2011) Evaluation of anti–inflammatory and analgesic potential of methanol extract of Tectona grandis flowers. Asian Pac J Trop Biomed 1(2):S155–S158. doi: 10.1016/S2221-1691(11)60146-9 CrossRefGoogle Scholar
  62. Rodríguez-Pérez M, Martínez JM, Rivero LR et al (2006) Evaluación de la actividad antimalárica de algunas plantas utilizadas en la medicina tradicional cubana. Rev Ciên Farm Básica Apl 27(3):197–205Google Scholar
  63. Roosita K, Kusharto CM, Sekiyama M, Fachrurozi Y, Ohtsuka R (2008) Medicinal plants used by the villagers of a Sundanese community in West Java, Indonesia. J Ethnopharmacol 115(1):72–81. doi: 10.1016/j.jep.2007.09.010 CrossRefPubMedGoogle Scholar
  64. Sanon S, Ollivier E, Azas N et al (2003) Ethnobotanical survey and in vitro antiplasmodial activity of plants used in traditional medicine in Burkina Faso. J Ethnopharmacol 86(2–3):143–147CrossRefPubMedGoogle Scholar
  65. Sarin B, Verma N, Martín JP, Mohanty A (2014) An overview of important ethnomedicinal herbs of Phyllanthus species : present status and future prospects. Sci World J. doi: 10.1155/2014/839172 Google Scholar
  66. Scholar EM, Pratt WB (2000) The antimicrobial drugs. Oxford University Press, New YorkGoogle Scholar
  67. Sen B, Dubey SD, Tripathi K (2011) Pharmacognostical study of Tamalaki (Phyllanthus fraternus Webster), an herb used in Tamaka-svasa. Ayu 32(3):398–401. doi: 10.4103/0974-8520.93924 CrossRefPubMedPubMedCentralGoogle Scholar
  68. Sharma PV, Samanta KC (2011) Hypoglycemic activity of methanolic extract of Tectona grandis Linn. root in alloxan induced diabetic rats. J Appl Pharm Sci 01(04):106–109Google Scholar
  69. Singh YN (1986) Traditional medicine in Fiji: some herbal folk cures used by Fiji Indians. J Ethnopharmacol 15(1):57–88. doi: 10.1016/0378-8741(86)90104-2 CrossRefPubMedGoogle Scholar
  70. Sittie AA, Lemmich E, Olsen CE, Hviid L, Brøgger CS (1998) Alkamides from Phyllanthus fraternus. Planta Med 64(2):192–193. doi: 10.1055/s-2006-957405 CrossRefPubMedGoogle Scholar
  71. Sonibare MA, Moody JO, Adesanya EO (2009) Use of medicinal plants for the treatment of measles in Nigeria. J Ethnopharmacol 122(2):268–72. doi: 10.1016/j.jep.2009.01.004
  72. Tinto H, D'Alessandro U, Sorgho H et al. (2015) Efficacy and safety of RTS,S/AS01 malaria vaccine with or without a booster dose in infants and children in Africa: final results of a phase 3, individually randomised, controlled trial. The Lancet 386(9988):31–45Google Scholar
  73. Trager W, Jensen JB (1976) Human malaria parasites in continuous culture. Science 193(4254):673–675CrossRefPubMedGoogle Scholar
  74. Valdés AFC, Martínez JM, Lizama RS, Gaitén YG, Rodríguez DA, Payrol JA (2010) In vitro antimalarial activity and cytotoxicity of some selected Cuban medicinal plants. Rev Inst Med Trop Sao Paulo 52(4):197–201CrossRefPubMedGoogle Scholar
  75. van Andel T, Myren B, Van Onselen S (2012) Ghana’s herbal market. J Ethnopharmacol 140(2):368–378. doi: 10.1016/j.jep.2012.01.028 CrossRefPubMedGoogle Scholar
  76. Watsierah CA, Ouma C (2014) Access to artemisinin-based combination therapy (ACT) and quinine in malaria holoendemic regions of western Kenya. Malar J 13(1):290. doi: 10.1186/1475-2875-13-290 CrossRefPubMedPubMedCentralGoogle Scholar
  77. White NJ, Pongtavornpinyo W (2003) The de novo selection of drug-resistant malaria parasites. Proc Biol Sci R Soc 270(1514):545–554. doi: 10.1098/rspb.2002.2241 CrossRefGoogle Scholar
  78. WHO (2010) Guidelines for the treatment of malaria, 2nd edn. WHO Press, GenevaGoogle Scholar
  79. WHO (2012) World malaria report 2011. WHO Press, GenevaGoogle Scholar
  80. WHO (2013) WHO traditional medicine strategy 2014–2023. WHO Press, GenevaGoogle Scholar
  81. WHO (2014) World malaria report 2014. WHO Press, Geneva, GenevaGoogle Scholar
  82. WHO (2015) WHO traditional medicine strategy: 2002–2005. WHO Press, GenevaGoogle Scholar
  83. Willcox M (2011) Improved traditional phytomedicines in current use for the clinical treatment of malaria. Planta Med 77(6):662–71. doi: 10.1055/s-0030-1250548 CrossRefPubMedGoogle Scholar
  84. Wright CW, Phillipson JD (1990) Natural products and the development of selective antiprotozoal drugs. Phytother Res 4(4):127–139. doi: 10.1002/ptr.2650040402 CrossRefGoogle Scholar
  85. Yakubu MT, Bukoye BB (2009) Abortifacient potentials of the aqueous extract of Bambusa vulgaris leaves in pregnant Dutch rabbits. Contraception 80(3):308–13. doi: 10.1016/j.contraception.2009.03.003 CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Gustav Komlaga
    • 1
    • 2
    • 3
    Email author
  • Sandrine Cojean
    • 2
  • Rita A. Dickson
    • 1
  • Mehdi A. Beniddir
    • 3
  • Soulaf Suyyagh-Albouz
    • 2
  • Merlin L. K. Mensah
    • 4
  • Christian Agyare
    • 5
  • Pierre Champy
    • 3
  • Philippe M. Loiseau
    • 2
    Email author
  1. 1.Department of Pharmacognosy, Faculty of Pharmacy and Pharmaceutical SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
  2. 2.Chimiothérapie antiparasitaire, BioCIS, Univ. Paris-Sud, CNRS, UFR PharmacieUniversité Paris-SaclayChâtenay-MalabryFrance
  3. 3.Laboratoire de Pharmacognosie, BioCIS, Univ. Paris-Sud, CNRS, UFR PharmacieUniversité Paris-SaclayChâtenay-MalabryFrance
  4. 4.Department of Herbal Medicine, Faculty of Pharmacy and Pharmaceutical SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana
  5. 5.Department of Pharmaceutics, Faculty of Pharmacy and Pharmaceutical SciencesKwame Nkrumah University of Science and TechnologyKumasiGhana

Personalised recommendations