Skip to main content

Advertisement

Log in

An easy ‘one tube’ method to estimate viability of Cryptosporidium oocysts using real-time qPCR

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Viability estimation of the highly resistant oocysts of Cryptosporidium remains a key issue for the monitoring and control of this pathogen. We present here a simple ‘one tube’ quantitative PCR (qPCR) protocol for viability estimation using a DNA extraction protocol which preferentially solubilizes excysted sporozoites rather than oocysts. Parasite DNA released from excysted sporozoites was quantified by real-time qPCR using a ribosomal DNA marker. The qPCR signal was directly proportional to the number of oocysts excysted, and a power-law relationship was noted between oocyst age and the proportion excysting. Unexcysted oocysts released negligible amounts of DNA making the method suitable for estimating viability of as few as 10 oocysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

References

  • Abrahamsen MS, Templeton TJ, Enomoto S, Abrahante JE, Zhu G, Lancto CA, Deng M, Liu C, Widmer G, Tzipori S, Buck GA, Xu P, Bankier AT, Dear PH, Konfortov BA, Spriggs HF, Iyer L, Anantharaman V, Aravind L, Kapur V (2004) Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441–445. doi:10.1126/science.1094786

    Article  CAS  PubMed  Google Scholar 

  • Boom R, Sol CJA, Salimans MMM, Jansen CL, Wertheim-van Dillen PME, van der Noordaa J (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28:495–503

    CAS  PubMed  PubMed Central  Google Scholar 

  • Campbell AT, Robertson LJ, Smith HV (1992) Viability of Cryptosporidium parvum oocysts: correlation of in vitro excystation with inclusion or exclusion of fluorogenic vital dyes. Appl Environ Microbiol 58:3488–3493

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chappell CL, Okhuysen PC, Langer-Curry R, Widmer G, Akiyoshi DE, Tanriverdi S, Tzipori S (2006) Cryptosporidium hominis: experimental challenge of healthy adults. Am J Trop Med Hyg 75:851–857

    CAS  PubMed  Google Scholar 

  • Connelly SJ, Wolyniak EA, Dieter KL, Williamson CE, Jellison KL (2007) Impact of zooplankton grazing on the excystation, viability and infectivity of the protozoan pathogens Cryptosporidium parvum and Giardia lamblia. Appl Environ Microbiol 73:7277–7282. doi:10.1128/AEM.01206-07

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Garcés G, Effenberger M, Najdrowski M, Wackwitz C, Gronauer A, Wilderer PA, Lebuhn M (2006) Quantification of Cryptosporidium parvum in anaerobic digesters treating manure by (reverse-transcription) quantitative real-time PCR, infectivity and excystation tests. Water Sci Technol 53:195–202. doi:10.2166/wst.2006.250

    Article  PubMed  Google Scholar 

  • Guy RA, Payment P, Krull UJ, Horgen PA (2003) Real-time PCR for quantification of Giardia and Cryptosporidium in environmental water samples and sewage. Appl Environ Microbiol 69:5178–5185. doi:10.1128/AEM.69.9.5178-5185.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hijjawi NS, Meloni BP, Morgan UM, Thompson RCA (2001) Complete development and long-term human and cattle genotypes in cell culture. Int J Parasitol 31:1048–1055. doi:10.1016/S0020-7519(01)00212-0

    Article  CAS  PubMed  Google Scholar 

  • Jenkins MB, Anguish LJ, Bowman DD, Walker MJ, Ghiorse WC (1997) Assessment of a dye permeability assay for determination of inactivation rates of Cryptosporidium parvum oocysts. Appl Environ Microbiol 63:3844–3850

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jenkins MB, Eaglesham BS, Anthony LC, Kachlany SC, Bowman DD, Ghiorse WC (2010) Significance of wall structure, macromolecular composition and surface polymers to the survival and transport of Cryptosporidium parvum oocysts. Appl Environ Microbiol 76:1926–1934. doi:10.1128/AEM.02295-09

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • King BJ, Monis PT (2007) Critical processes affecting Cryptosporidium oocyst survival in the environment. Parasitology 134:309–323. doi:10.1017/S0031182006001491

    Article  CAS  PubMed  Google Scholar 

  • Liang Z, Keeley A (2012) Comparison of propidium monoazide-quantitative PCR and reverse transcription quantitative PCR for viability detection of fresh Cryptosporidium oocysts following disinfection and after long-term storage in water samples. Water Res 46:5941–5953. doi:10.1016/j.watres.2012.08.014

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Kuhlenschmidt MS, Kuhlenschmidt TB, Nguyen TH (2010) Composition and conformation of Cryptosporidium parvum oocyst wall surface macromolecules and their effect on adhesion kinetics of oocysts on quartz surface. Biomacromolecules 11:2109–2015. doi:10.1021/bm100477j

  • Nydam DV, Wade SE, Schaaf SL, Mohammed HO (2001) Number of Cryptosporidium parvum oocysts or Giardia spp cysts shed by dairy calves after natural infection. Am J Vet Res 62:1612–1615. doi:10.2460/ajvr.2001.62.1612

  • Paziewska-Harris A, Singer M, Schoone G, Schallig H (2015) Quantitative analysis of Cryptosporidium growth in in vitro culture—the impact of parasite density on the success of infection. Parasitol Res 115:329–337. doi:10.1007/s00436-015-4751-1

    Article  PubMed  Google Scholar 

  • Shahiduzzaman M, Dyachenko V, Obwaller A, Unglaube S, Daugschies A (2009) Combination of cell culture and quantitative PCR for screening of drugs against Cryptosporidium parvum. Vet Parasitol 162:271–277. doi:10.1016/j.vetpar.2009.03.009

    Article  CAS  PubMed  Google Scholar 

  • Smith JJ, Gunasekera TS, Barardi CRM, Veal D, Vesey G (2004) Determination of Cryptosporidium parvum oocyst viability by fluorescence in situ hybridization using a ribosomal RNA-directed probe. J Appl Microbiol 96:409–417. doi:10.1046/j.1365-2672.2004.02150.x

    Article  CAS  PubMed  Google Scholar 

  • Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 124:80–89. doi:10.1016/j.exppara.2009.03.018

    Article  CAS  PubMed  Google Scholar 

  • Zambriski JA, Nydam DV, Wilcox ZJ, Bowman DD, Mohammed HO, Liotta JL (2013) Cryptosporidium parvum: determination of ID50 and the dose-response curve in experimentally challenged dairy calves. Vet Parasitol 197:104–112. doi:10.1016/j.vetpar.2013.04.022

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Paziewska-Harris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Paziewska-Harris, A., Schoone, G. & Schallig, H.D.F.H. An easy ‘one tube’ method to estimate viability of Cryptosporidium oocysts using real-time qPCR. Parasitol Res 115, 2873–2877 (2016). https://doi.org/10.1007/s00436-016-5044-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5044-z

Keywords

Navigation