Skip to main content

Advertisement

Log in

Anticoccidial activities of Chitosan on Eimeria papillata-infected mice

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Eimeria spp. multiply within the intestinal tract causing severe inflammatory responses. Chitosan (CS), meanwhile, has been shown to exhibit anti-inflammatory activities in different experimental models. Here, we investigated the effect of CS on the outcome of inflammation caused by Eimeria papillata in the mouse intestine. Investigations were undertaken into the oocyst output in feces and developmental stages and goblet cells in intestinal tissue. Assays for lipid peroxidation, nitric oxide (NO), and myeloperoxidase (MPO) were also performed. T cells in intestinal tissue were counted using immunohistochemistry while total IgA in serum or intestinal wash was assayed using ELISA. In addition, mRNA expression of tumor necrosis factor alpha (TNF-α), transforming growth factor β (TGF-β), interleukin (IL)-10, and IL-4 were detected using real-time PCR. The data indicated a reduction in both oocyst output and in the number of parasite developmental stages following CS treatment, while the goblet cell hypoplasia in infected mice was also inhibited. CS decreased lipid peroxidation, NO, and MPO but did not alter the T cell count or IgA levels in comparison to the infected group. The expression of TNF-α and TGF-β decreased but IL-10 and IL-4 increased after CS treatment in comparison to the non-treated infected group. In conclusion, CS showed anti-inflammatory and protective effects against E. papillata infection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Al-Quraishy S, Delic D, Sies H, Wunderlich F, Abdel-Baki AS, Dkhil MA (2011) Differential miRNA expression in the mouse jejunum during garlic treatment of Eimeria papillata infections. Parasitol Res 109:387–394

    Article  PubMed  Google Scholar 

  • Amer OS, Dkhil MA, Hikal WM, Al-Quraishy S (2015) Antioxidant and anti-inflammatory activities of pomegranate (Punica granatum) on Eimeria papillata-induced infection in mice. Biomed Res Int 2015:219670

    PubMed  PubMed Central  Google Scholar 

  • Barocelli E, Ballabeni V, Ghizzardi P, Cattaruzza F, Bertoni S, Lagrasta CA, Impicciatore M (2006) The selective inhibition of inducible nitric oxide synthase prevents intestinal ischemia-reperfusion injury in mice. Nitric Oxide 14:212–218

    Article  CAS  PubMed  Google Scholar 

  • Berkels R, Purol-Schnabel S, Roesen R (2004) Measurement of nitric oxide by reconversion of nitrate/nitrite to NO. Methods Mol Biol 279:1–8

    CAS  PubMed  Google Scholar 

  • Blanchard C, Durual S, Estienne M, Bouzakri K, Heim MH, Blin N, Cuber JC (2004) IL-4 and IL-13 up-regulate intestinal trefoil factor expression: requirement for STAT6 and de novo protein synthesis. J Immunol 172:3775–3783

    Article  CAS  PubMed  Google Scholar 

  • Choi EH, Yang HP, Chun HS (2012) Chitooligosaccharide ameliorates diet-induced obesity in mice and affects adipose gene expression involved in adipogenesis and inflammation. Nutr Res 32:218–228

    Article  CAS  PubMed  Google Scholar 

  • Delic D, Gailus N, Vohr HV, Dkhil M, Al-Quraishy S, Wunderlich F (2010) Testosterone-induced permanent changes of hepatic gene expression in female mice sustained during Plasmodium chabaudi malaria infection. J Mol Endocrinol 45:379–390

    Article  CAS  PubMed  Google Scholar 

  • Dharmani P, Srivastava V, Kissoon-Singh V, Chadee K (2009) Role of intestinal mucins in innate host defense mechanisms against pathogens. J Innate Immun 1:123–135

    Article  CAS  PubMed  Google Scholar 

  • Dkhil MA (2013) Anti-coccidial, anthelmintic and antioxidant activities of pomegranate (Punica granatum) peel extract. Parasitol Res 112:2639–2646

    Article  PubMed  Google Scholar 

  • Dkhil MA, Al-Quraishy S, Abdel Moneim AE, Delic D (2013) Protective effect of Azadirachta indica extract against Eimeria papillata-induced coccidiosis. Parasitol Res 112:101–106

    Article  PubMed  Google Scholar 

  • Dkhil MA, Metwaly MS, Al-Quraishy S, Sherif NE, Delic D, Al Omar SY, Wunderlich F (2015) Anti-Eimeria activity of berberine and identification of associated gene expression changes in the mouse jejunum infected with Eimeria papillata. Parasitol Res 114:1581–1593

    Article  PubMed  Google Scholar 

  • Fernandes J, Sereno J, Garrido P, Parada B, Cunha MF, Reis F, Pintado ME, Santos-Silva A (2012) Inhibition of bladder tumor growth by chitooligosaccharides in an experimental carcinogenesis model. Mar Drugs 10:2661–2675

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fernandes JC, Spindola H, de Sousa V, Park PJ, Shin ES, Sohn JH, Seo DB, Lim KM, Kim WG, Lee SJ (2010) Antiinflammatory activity of chitooligosaccharides in vivo. Mar Drugs 8:1763–1768

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Gaafar MR, Mady RF, Diab RG, Shalaby TI (2014) Chitosan and silver nanoparticles: promising anti-toxoplasma agents. Exp Parasitol 143:30–38

    Article  CAS  PubMed  Google Scholar 

  • Hierholzer C, Kalff JC, Billiar TR, Bauer AJ, Tweardy DJ, Harbrecht BG (2004) Induced nitric oxide promotes intestinal inflammation following hemorrhagic shock. Am J Physiol Gastrointest Liver Physiol 286:225–233

    Article  Google Scholar 

  • Hussain I, Singh T, Chittenden C (2012) Preparation of chitosan oligomers and characterization: their antifungal activities and decay resistance. Holzforschung 66:119–125

    Article  CAS  Google Scholar 

  • Inagaki-Ohara K, Dewi FN, Hisaeda H, Smith AL, Jimi F, Miyahira M, Abdel-Aleem AS, Horii Y, Nawa Y (2006) Intestinal intraepithelial lymphocytes sustain the epithelial barrier function against Eimeria vermiformis infection. Infect Immun 74:5292–5301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Islam MA, Firdous J, Choi YJ, Yun CH, Cho CS (2012) Design and application of chitosan microspheres as oral and nasal vaccine carriers: an updated review. Int J Nanomedicine 7:6077–6093

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jakowlew SB, Mathias A, Lillehoj HS (1997) Transforming growth factor-beta isoforms in the developing chicken intestine and spleen: increase in transforming growth factor-beta 4 with coccidia infection. Vet Immunol Immunopathol 55:321–339

    Article  CAS  PubMed  Google Scholar 

  • Khalil AM, Yasuda M, Farid AS, Desouky MI, Mohi-Eldin MM, Haridy M, Horii Y (2015) Immunomodulatory and antiparasitic effects of garlic extract on Eimeria vermiformis-infected mice. Parasitol Res 114:2735–2742

    Article  PubMed  Google Scholar 

  • Kim JA, Ahn BN, Kong CS, Kim SK (2012) Chitooligomers inhibit UV-A-induced photoaging of skin by regulating TGF-beta/Smad signaling cascade. Carbohydr Polym 88:490–495

    Article  CAS  Google Scholar 

  • Kim MS, You HJ, You MK, Kim NS, Shim BS, Kim HM (2004) Inhibitory effect of water-soluble chitosan on TNF-alpha and IL-8 secretion from HMC-1 cells. Immunopharmacol Immunotoxicol 26:401–409

    Article  PubMed  Google Scholar 

  • Li Y, Liu H, Xu QS, Du YG, Xu J (2014) Chitosan oligosaccharides block LPS-induced O-GlcNAcylation of NF-κB and endothelial inflammatory response. Carbohydr Polym 99:568–578

    Article  CAS  PubMed  Google Scholar 

  • Lillehoj HS (1998) Role of T lymphocytes and cytokines in coccidiosis. Int J Parasitol 28:1071–1081

    Article  CAS  PubMed  Google Scholar 

  • Linh BK, Hayashi T, Horii Y (2009) Eimeria vermiformis infection reduces goblet cells by multiplication in the crypt cells of the small intestine of C57BL/6 mice. Parasitol Res 104:789–794

    Article  PubMed  Google Scholar 

  • Lüllau E, Heyse S, Vogel H, Marison I, von Stockar U, Kraehenbuhl JP, Corthésy B (1996) Antigen binding properties of purified immunoglobulin A and reconstituted secretory immunoglobulin A antibodies. J Biol Chem 271:16300–16309

    Article  PubMed  Google Scholar 

  • McDougald LR (2003) Coccidiosis. In: Saif (ed) Diseases of poultry. Iowa State Press, Iowa, pp 1001–1010

    Google Scholar 

  • Metwaly MS, Dkhil MA, Al-Quraishy S (2012) The potential role of Phoenix dactylifera on Eimeria papillata-induced infection in mice. Parasitol Res 111:681–687

    Article  PubMed  Google Scholar 

  • Nam KS, Kim MK, Shon YH (2007) Chemopreventive effect of chitosan oligosaccharide against colon carcinogenesis. J Microbiol Biotechnol 17:1546–1549

    CAS  PubMed  Google Scholar 

  • Ohkawa H, Ohishi N, Yagi K (1979) Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem 95:351–358

    Article  CAS  PubMed  Google Scholar 

  • Ohtsuka Y, Lee J, Stamm DS, Sanderson IR (2001) MIP-2 secreted by epithelial cells increases neutrophil and lymphocyte recruitment in the mouse intestine. Gut 49:526–533

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ovington KS, Alleva LM, Kerr EA (1995) Cytokines and immunological control of Eimeria spp. Int J Parasitol 25:1331–1351

    Article  CAS  PubMed  Google Scholar 

  • Porporatto C, Bianco ID, Correa SG (2005) Local and systemic activity of the polysaccharide chitosan at lymphoid tissues after oral administration. J Leukocyte Biol 78:62–69

    Article  CAS  PubMed  Google Scholar 

  • Qiao Y, Bai XF, Du YG (2011) Chitosan oligosaccharides protect mice from LPS challenge by attenuation of inflammation and oxidative stress. Int Immunopharmacol 11:121–127

    Article  CAS  PubMed  Google Scholar 

  • Schito ML, Barta JR, Chobotar B (1996) Comparison of four murine Eimeria species in immunocompetent and immunodeficient mice. J Parasitol 82:255–262

    Article  CAS  PubMed  Google Scholar 

  • Sun BW, Chen ZY, Chen X, Liu C (2007) Attenuation of leukocytes sequestration by carbon monoxide-releasing molecules: liberated carbon monoxide in the liver of thermally injured mice. J Burn Care Res 28:173–181

    Article  PubMed  Google Scholar 

  • Tavaria FK, Soares JC, Reis IL, Paulo MH, Malcata FX, Pintado ME (2012) Chitosan: antimicrobial action upon staphylococci after impregnation onto cotton fabric. J Appl Microbiol 112:1034–1041

    Article  CAS  PubMed  Google Scholar 

  • Tsakiris S, Schulpis KH, Marinou M, Behrakis P (2004) Protective effect of L-cysteine and glutathione on the modulated suckling rat brain Na+, K+, -ATPase and Mg2+-ATPase activities induced by the in vitro galactosaemia. Pharmacol Res 495:475–479

    Article  Google Scholar 

  • Prabhu VV, Guruvayoorappan C (2014) Protective effect of marine mangrove Rhizophora apiculata on acetic acid induced experimental colitis by regulating anti-oxidant enzymes, inflammatory mediators and nuclear factor-kappa B subunits. Int Immunopharmacol 18:124–134

    Article  Google Scholar 

  • Van der Lubben IM, Kersten G, Fretz MM, Beuvery C, Coos Verhoef J, Junginger HE (2003) Chitosan microparticles for mucosal vaccination against diphtheria: oral and nasal efficacy studies in mice. Vaccine 21:1400–1408

    Article  PubMed  Google Scholar 

  • Wunderlich F, Al-Quraishy S, Steinbrenner H, Sies H, Dkhil MA (2014) Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant-based natural products. Parasitol Res 113:3547–3556

    Article  PubMed  Google Scholar 

  • Xiao D, Tang Z, Yin Y, Zhang B, Hu X, Feng Z, Wang J (2013) Effects of dietary administering chitosan on growth performance, jejunal morphology, jejunal mucosal sIgA, occludin, claudin-1 and TLR4 expression in weaned piglets challenged by enterotoxigenic Escherichia coli. Int Immunopharmacol 17:670–676

    Article  CAS  PubMed  Google Scholar 

  • Xu JH, Dai WJ, Chen B, Fan XY (2015) Mucosal immunization with PsaA protein, using chitosan as a delivery system, increases protection against acute otitis media and invasive infection by Streptococcus pneumoniae. Scandinavian J Immunol 81:177–185

    Article  CAS  Google Scholar 

  • Yunus M, Horii Y, Makimura S, Smith AL (2005) Murine goblet cell hypoplasia during Eimeria pragensis infection is ameliorated by clindamycin treatment. J Vet Sci 67:311–315

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We extend our appreciation to the Dean of Scientific Research, King Saud University, Riyadh, for funding the work through the research group project number RG -004.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel-Azeem S. Abdel-Baki.

Ethics declarations

Conflict of interest statement

We declare that we have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abdel-Latif, M., Abdel-Haleem, H.M. & Abdel-Baki, AA.S. Anticoccidial activities of Chitosan on Eimeria papillata-infected mice. Parasitol Res 115, 2845–2852 (2016). https://doi.org/10.1007/s00436-016-5035-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-5035-0

Keywords

Navigation