Skip to main content

Advertisement

Log in

Nosema spp. infections cause no energetic stress in tolerant honeybees

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Host-pathogen coevolution leads to reciprocal adaptations, allowing pathogens to increase host exploitation or hosts to minimise costs of infection. As pathogen resistance is often associated with considerable costs, tolerance may be an evolutionary alternative. Here, we examined the effect of two closely related and highly host dependent intracellular gut pathogens, Nosema apis and Nosema ceranae, on the energetic state in Nosema tolerant and sensitive honeybees facing the infection. We quantified the three major haemolymph carbohydrates fructose, glucose, and trehalose using high-performance liquid chromatography (HPLC) as a measure for host energetic state. Trehalose levels in the haemolymph were negatively associated with N. apis infection intensity and with N. ceranae infection regardless of the infection intensity in sensitive honeybees. Nevertheless, there was no such association in Nosema spp. infected tolerant honeybees. These findings suggest that energy availability in tolerant honeybees was not compromised by the infection. This result obtained at the individual level may also have implications at the colony level where workers in spite of a Nosema infection can still perform as well as healthy bees, maintaining colony efficiency and productivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig 1
Fig 2

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alaux C, Crauser D, Pioz M, Saulnier C, Le Conte Y (2014) Parasitic and immune modulation of flight activity in honey bees tracked with optical counters. J Exp Biol 217:3416–3424. doi:10.1242/jeb.105783

    Article  PubMed  Google Scholar 

  • Aliferis KA, Copley T, Jabaji S (2012) Gas chromatography-mass spectrometry metabolite profiling of worker honey bee (Apis mellifera L.) hemolymph for the study of Nosema ceranae infection. J Insect Physiol 58:1349–1359. doi:10.1016/j.jinsphys.2012.07.010

    Article  CAS  PubMed  Google Scholar 

  • Antúnez K, Martín-Hernández R, Prieto L, Meana A, Zunino P, Higes M (2009) Immune suppression in the honey bee (Apis mellifera) following infection by Nosema ceranae (Microsporidia). Environ Microbiol 11:2284–2290. doi:10.1111/j.1462-2920.2009.01953.x

    Article  PubMed  Google Scholar 

  • Blatt J, Roces F (2001) Haemolymph sugar levels in foraging honeybees (Apis mellifera carnica): dependence on metabolic rate and in vivo measurement of maximal rates of trehalose synthesis. J Exp Biol 204:2709–2716

    CAS  PubMed  Google Scholar 

  • Bozic J, Woodring J (1997) Effect of activity on the haemolymph sugar titres in honey bees. J Apicult Res 36:33–39

    CAS  Google Scholar 

  • Chaimanee V, Chantawannakul P, Chen Y, Evans JD, Pettis JS (2012) Differential expression of immune genes of adult honey bee (Apis mellifera) after inoculated by Nosema ceranae. J Insect Physiol 58:1090–1095. doi:10.1016/j.jinsphys.2012.04.016

    Article  CAS  PubMed  Google Scholar 

  • Dussaubat C, Brunet J-L, Higes M, Colbourne JK, Lopez J, Choi J-H, Martín-Hernández R, Botias C, Cousin M, McDonnell C, Bonnet M, Belzunces LP, Moritz RFA, Le Conte Y, Alaux C (2012) Gut pathology and responses to the microsporidium Nosema ceranae in the honey bee Apis mellifera. Plos One 7 doi:10.1371/journal.pone.0037017

  • Dussaubat C, Maisonnasse A, Crauser D, Beslay D, Costagliola G, Soubeyrand S, Kretzchmar A, Le Conte Y (2013) Flight behavior and pheromone changes associated to Nosema ceranae infection of honey bee workers (Apis mellifera) in field conditions. J Invertebr Pathol 113:42–51. doi:10.1016/j.jip.2013.01.002

    Article  CAS  PubMed  Google Scholar 

  • Fell RD (1990) The qualitative and quantitative-analysis of insect hemolymph sugars by high-performance thin-layer chromatography. Comp Biochem Phys A 95:539–544. doi:10.1016/0300-9629(90)90735-b

    Article  Google Scholar 

  • Forsgren E, Fries I (2010) Comparative virulence of Nosema ceranae and Nosema apis in individual European honey bees. Vet Parasitol 170:212–217. doi:10.1016/j.vetpar.2010.02.010

    Article  PubMed  Google Scholar 

  • Fries I (2010) Nosema ceranae in European honey bees (Apis mellifera). J Invertebr Pathol 103:S73–S79. doi:10.1016/j.jip.2009.06.017

    Article  PubMed  Google Scholar 

  • Fries I, Granados RR, Morse RA (1992) Intracellular germination of spores of Nosema apis Z. Apidologie 23:61–70. doi:10.1051/apido:19920107

    Article  Google Scholar 

  • Fries I, Chauzat MP, Chen YP, Doublet V, Genersch E, Gisder S, Higes M, McMahon DP, Martin-Hernandez R, Natsopoulou M, Paxton RJ, Tanner G, Webster TC, Williams GR (2013) Standard methods for Nosema research. J Apicult Res 52 doi:10.3896/ibra.1.52.1.14

  • Gisder S, Genersch E (2013) Molecular differentiation of Nosema apis and Nosema ceranae based on species-specific sequence differences in a protein coding gene. J Invertebr Pathol 113:1–6. doi:10.1016/j.jip.2013.01.004

    Article  CAS  PubMed  Google Scholar 

  • Gisder S, Mockel N, Linde A, Genersch E (2011) A cell culture model for Nosema ceranae and Nosema apis allows new insights into the life cycle of these important honey bee-pathogenic microsporidia. Environ Microbiol 13:404–413. doi:10.1111/j.1462-2920.2010.02346.x

    Article  CAS  PubMed  Google Scholar 

  • Hamilton WD (1964) The genetical evolution of social behaviour. I J Theor Biol 7:1–16. doi:10.1016/0022-5193(64)90038-4

    Article  CAS  PubMed  Google Scholar 

  • Harrison JF, Fewell JH (2002) Environmental and genetic influences on flight metabolic rate in the honey bee, Apis mellifera. Comp Biochem Phys A 133:323–333. doi:10.1016/s1095-6433(02)00163-0

    Article  Google Scholar 

  • Hartfelder K, Bitondi MMG, Brent CS, Guidugli-Lazzarini KR, Simoes ZLP, Stabentheiner A, Tanaka ED, Wang Y (2013) Standard methods for physiology and biochemistry research in Apis mellifera. J Apicult Res 52 doi:10.3896/ibra.1.52.1.06

  • Hatjina F, Bienkowska M, Charistos L, Chlebo R, Costa C, Dražić MM, Filipi J, Gregorc A, Ivanova EN, Kezić N, Kopernicky J, Kryger P, Lodesani M, Lokar V, Mladenovic M, Panasiuk B, Petrov P, Rai S, Smodis Skerl MI, Vejsns F, Wilde J (2014) A review of methods used in some European countries for assessing the quality of honey bee queens through their physical characters and the performance of their colonies. J Apicult Res 53:337–363. doi:10.3896/IBRA.1.53.3.02

    Article  Google Scholar 

  • Higes M, García-Palencia P, Martín-Hernández R, Meana A (2007) Experimental infection of Apis mellifera honeybees with Nosema ceranae (Microsporidia). J Invertebr Pathol 94:211–217. doi:10.1016/j.jip.2006.11.001

    Article  PubMed  Google Scholar 

  • Higes M, Meana A, Bartolomé C, Botías C, Martín-Hernández R (2013) Nosema ceranae (Microsporidia), a controversial 21st century honey bee pathogen. Environ Microbiol Rep 5:17–29. doi:10.1111/1758-2229.12024

    Article  PubMed  Google Scholar 

  • Holt HL, Aronstein KA, Grozinger CM (2013) Chronic parasitization by Nosema microsporidia causes global expression changes in core nutritional, metabolic and behavioral pathways in honey bee workers (Apis mellifera). BMC Genomics 14 doi:10.1186/1471-2164-14-799

  • Huang W-F, Solter LF (2013) Comparative development and tissue tropism of Nosema apis and Nosema ceranae. J Invertebr Pathol 113:35–41. doi:10.1016/j.jip.2013.01.001

    Article  PubMed  Google Scholar 

  • Huang Q, Kryger P, Le Conte Y, Moritz RFA (2012) Survival and immune response of drones of a Nosemosis tolerant honey bee strain towards N. ceranae infections. J Invertebr Pathol 109:297–302. doi:10.1016/j.jip.2012.01.004

    Article  PubMed  Google Scholar 

  • Huang Q, Kryger P, Le Conte Y, Lattorff HMG, Kraus FB, Moritz RFA (2014a) Four quantitative trait loci associated with low Nosema ceranae (Microsporidia) spore load in the honeybee Apis mellifera. Apidologie 45:248–256 doi:10.1007/s13592-013-0243-4

  • Huang Q, Lattorff HMG, Kryger P, Le Conte Y, Moritz RFA (2014b) A selective sweep in a microsporidian parasite Nosema-tolerant honeybee population, Apis mellifera. Anim Genet 45:267–273 doi:10.1111/age.12114

  • Hurd H (2001) Host fecundity reduction: a strategy for damage limitation? Trends Parasitol 17:363–368. doi:10.1016/s1471-4922(01)01927-4

    Article  CAS  PubMed  Google Scholar 

  • Jack CJ, Uppala SS, Lucas HM, Sagili RR (2016) Effects of pollen dilution on infection of Nosema ceranae in honey bees. J Insect Physiol 87:12

    Article  CAS  PubMed  Google Scholar 

  • Keeling P (2009) Five questions about Microsporidia. PLoS Pathog 5 doi:10.1371/journal.ppat.1000489

  • Kurze C, Le Conte Y, Dussaubat C, Erler S, Kryger P, Lewkowski O, Müller T, Widder M, Moritz RF (2015) Nosema tolerant honeybees (Apis mellifera) escape parasitic manipulation of apoptosis. Plos One 10:e0140174

    Article  PubMed  PubMed Central  Google Scholar 

  • Lochmiller RL, Deerenberg C (2000) Trade-offs in evolutionary immunology: just what is the cost of immunity? Oikos 88:87–98. doi:10.1034/j.1600-0706.2000.880110.x

    Article  Google Scholar 

  • Martín-Hernández R, Botías C, Barrios L, Martinez-Salvador A, Meana A, Mayack C, Higes M (2011) Comparison of the energetic stress associated with experimental Nosema ceranae and Nosema apis infection of honeybees (Apis mellifera). Parasitol Res 109:605–612. doi:10.1007/s00436-011-2292-9

    Article  PubMed  Google Scholar 

  • Mayack C, Naug D (2009) Energetic stress in the honeybee Apis mellifera from Nosema ceranae infection. J Invertebr Pathol 100:185–188. doi:10.1016/j.jip.2008.12.001

    Article  PubMed  Google Scholar 

  • Mayack C, Naug D (2010) Parasitic infection leads to decline in hemolymph sugar levels in honeybee foragers. J Insect Physiol 56:1572–1575. doi:10.1016/j.jinsphys.2010.05.016

    Article  CAS  PubMed  Google Scholar 

  • Moffett JO, Lawson FA (1975) Effect of Nosema-infection on O2 consumption by honey bees. J Econ Entomol 68:627–629

    Article  Google Scholar 

  • Moret Y, Schmid-Hempel P (2000) Survival for immunity: the price of immune system activation for bumblebee workers. Science 290:1166–1168. doi:10.1126/science.290.5494.1166

    Article  CAS  PubMed  Google Scholar 

  • Moritz R, Southwick EE (1992) Bees as superorganisms: an evolutionary reality. Springer, Berlin Heidelberg

    Book  Google Scholar 

  • Naug D (2014) Infected honeybee foragers incur a higher loss in efficiency than in the rate of energetic gain. Biol Lett 10 doi:10.1098/rsbl.2014.0731

  • Naug D, Gibbs A (2009) Behavioral changes mediated by hunger in honeybees infected with Nosema ceranae. Apidologie 40:595–599. doi:10.1051/apido/2009039

    Article  Google Scholar 

  • R Development Core Team (2015) R: a language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria, http://www.R-project.org/ . ISBN 3-900051-07-0

    Google Scholar 

  • Råberg L, Sim D, Read AF (2007) Disentangling genetic variation for resistance and tolerance to infectious diseases in animals. Science 318:812–814. doi:10.1126/science.1148526

    Article  PubMed  Google Scholar 

  • Rauw WM (2012) Immune response from a resource allocation perspective. Front Genet 3:267. doi:10.3389/fgene.2012.00267

    Article  PubMed  PubMed Central  Google Scholar 

  • Roth O, Kurtz J (2008) The stimulation of immune defence accelerates development in the red flour beetle (Tribolium castaneum). J Evol Biol 21:1703–1710. doi:10.1111/j.1420-9101.2008.01584.x

    Article  CAS  PubMed  Google Scholar 

  • Sadd BM, Siva-Jothy MT (2006) Self-harm caused by an insect’s innate immunity. P Roy Soc B-Biol Sci 273:2571–2574. doi:10.1098/rspb.2006.3574

    Article  Google Scholar 

  • Schmid-Hempel P (2005) Evolutionary ecology of insect immune defenses. Annu Rev Entomol 50:529–551. doi:10.1146/annurev.ento.50.071803.130420

    Article  CAS  PubMed  Google Scholar 

  • Schmid-Hempel P (2008) Parasite immune evasion: a momentous molecular war. Trends Ecol Evol 23:318–326. doi:10.1016/j.tree.2008.02.011

    Article  PubMed  Google Scholar 

  • Sheldon BC, Verhulst S (1996) Ecological immunology: costly parasite defences and trade-offs in evolutionary ecology. Trends Ecol Evol 11:317–321. doi:10.1016/0169-5347(96)10039-2

    Article  CAS  PubMed  Google Scholar 

  • Sorci G (2013) Immunity, resistance and tolerance in bird-parasite interactions. Parasite Immunol 35:350–361. doi:10.1111/pim.12047

    Google Scholar 

  • Straub L, Williams GR, Pettis J, Fries I, Neumann P (2015) Superorganism resilience: eusociality and susceptibility of ecosystem service providing insects to stressors. Curr Opin Insect Sci 12:109

    Article  Google Scholar 

  • Suarez RK, Lighton JRB, Joos B, Roberts SP, Harrison JF (1996) Energy metabolism, enzymatic flux capacities, and metabolic flux rates in flying honeybees. Proc Natl Acad Sci U S A 93:12616–12620. doi:10.1073/pnas.93.22.12616

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suarez RK, Darveau CA, Welch KC, O’Brien DM, Roubik DW, Hochachka PW (2005) Energy metabolism in orchid bee flight muscles: carbohydrate fuels all. J Exp Biol 208:3573–3579. doi:10.1242/jeb.01775

    Article  CAS  PubMed  Google Scholar 

  • Thompson SN (2003) Trehalose—the insect ‘blood’ sugar. In: Simpson SJ (ed) Adv Insect Physiol, Vol 31, vol 31. Advances in Insect Physiology. pp 205–285. doi:10.1016/s0065-2806(03)31004-5

  • Williams BAP (2009) Unique physiology of host-parasite interactions in Microsporidia infections. Cell Microbiol 11:1551–1560. doi:10.1111/j.1462-5822.2009.01362.x

    Article  CAS  PubMed  Google Scholar 

  • Williams GR, Shutler D, Burgher-MacLellan KL, Rogers REL (2014) Infra-population and -community dynamics of the parasites Nosema apis and Nosema ceranae, and consequences for honey bee (Apis mellifera) hosts. Plos One 9 doi:10.1371/journal.pone.0099465

  • Wolf S, McMahon DP, Lim KS, Pull CD, Clark SJ, Paxton RJ, Osborne JL (2014) So near and yet so far: harmonic radar reveals reduced homing ability of Nosema infected honeybees. Plos One 9 doi:10.1371/journal.pone.0103989

  • Woodring J, Boulden M, Das S, Gade G (1993) Studies on blood-sugar homeostasis in the honeybee (Apis mellifera, L). J Insect Physiol 39:89–97. doi:10.1016/0022-1910(93)90022-j

    Article  CAS  Google Scholar 

  • Woodring J, Das S, Gade G (1994) Hypertrehalosemic factors from the corpora cardiaca of the honeybee (Apis mellifera) and the paper wasp (Polistes exclamans). J Insect Physiol 40:685–692. doi:10.1016/0022-1910(94)90095-7

    Article  CAS  Google Scholar 

Download references

Acknowledgments

We thank three anonymous reviewers for their constructive comments, which helped to improve our manuscript. The study was supported by the Deutsche Forschungsgemeinschaft DFG priority programme SPP 1399 “Host-parasite co-evolution” (grant number MO373/26-2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christoph Kurze.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurze, C., Mayack, C., Hirche, F. et al. Nosema spp. infections cause no energetic stress in tolerant honeybees. Parasitol Res 115, 2381–2388 (2016). https://doi.org/10.1007/s00436-016-4988-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-016-4988-3

Keywords

Profiles

  1. Christopher Mayack