Advertisement

Parasitology Research

, Volume 115, Issue 6, pp 2277–2283 | Cite as

Fighting fish parasites with photodynamically active chlorophyllin

  • D.-P. HäderEmail author
  • J. Schmidl
  • R. Hilbig
  • M. Oberle
  • H. Wedekind
  • P. Richter
Original Paper

Abstract

Water-soluble chlorophyll (chlorophyllin) was used in a phototoxic reaction against a number of fish ectoparasites such as Ichtyobodo, Dactylogyrus, Trichodina, and Argulus. Chlorophyllin is applied to the water at concentrations of several micrograms per milliliter for a predefined incubation time, and afterwards, the parasites are exposed to simulated solar radiation. Application in the dark caused only little damage to the parasites; likewise, light exposure without the addition of the photosensitizer was ineffective. In Ichthyobodo, 2 μg/mL proved sufficient with subsequent simulated solar radiation to almost quantitatively kill the parasites, while in Dactylogyrus, a concentration of about 6 μg/mL was necessary. The LD50 value for this parasite was 1.02 μg/mL. Trichodina could be almost completely eliminated at 2 μg/mL. Only in the parasitic crustacean Argulus, no killing could be achieved by a photodynamic reaction using chlorophyllin. Chlorophyllin is non-toxic, biodegradable, and can be produced at low cost. Therefore, we propose that chlorophyllin (or other photodynamic substances) are a possible effective countermeasure against several ectoparasites in ponds and aquaculture since chemical remedies are either forbidden and/or ineffective.

Keywords

Chlorophyllin Photodynamic reaction Parasitology Fish Ectoparasite Ichtyobodo Dactylogyrus Trichodina Argulus Photochemistry Aquaculture 

Notes

Acknowledgments

This work was supported by the Bundesministerium für Ernährung und Landwirtschaft, Bundesprogramm Ökologischer Landbau (FKZ 08OE040). The authors thank S. Wohllebe for her excellent work during the experiments.

Compliance with ethical standards

All animal experiments were approved by the Government of Central Franconia (request-numbers 4–2532.1-18/09 and 54–2532.1-1/11) according to § 8 Protection of Animals Act. All experiments were carried out with the common carp (C. carpio) at the Bavarian State Research Center for Agriculture, Institute for Fisheries, Höchstadt, Germany.

References

  1. Abdel-Kader MH, El-Tayeb TA (2009) Field application for malaria vector control using sunlight active formulated extract. Austria PatentGoogle Scholar
  2. Abdel-Kader MH, El Sherbini SA, El-Tayeb TA, Hassan E, El-Emam M, El-Taraky A (2008) Using photo-oxidation reactions by photosensitizer for control of Schistosoma’s snail vector. Egypt PatentGoogle Scholar
  3. Alsarakibi M, Wadeh H, Li G (2014) Parasitism of Argulus japonicus in cultured and wild fish of Guangdong, China with new record of three hosts. Parasitol Res 113(2):769–775CrossRefPubMedGoogle Scholar
  4. Ben Amor T, Bortolotto L, Jori G (2000) Porphyrins and related compounds as photoactivatable insecticides. 3. Laboratory and field studies. Photochem Photobiol 71:124–128CrossRefPubMedGoogle Scholar
  5. Blaylock RB, Bullard SA (2014) Counter-insurgents of the blue revolution? Parasites and diseases affecting aquaculture and science. J Parasitol 100(6):743–755CrossRefPubMedGoogle Scholar
  6. Breinholt V et al (1999) Chlorophyllin chemoprevention in trout initiated by aflatoxin B 1 bath treatment: an evaluation of reduced bioavailability vs. target organ protective mechanisms. Toxicol Appl Pharmacol 158(2):141–151CrossRefPubMedGoogle Scholar
  7. Cross ML, Matthews RA (1992) Ichthyophthiriasis in carp, Cyprinus carpio L.: fate of parasites in immunized fish. J Fish Dis 15:497–505CrossRefGoogle Scholar
  8. Cusack R, Cone DK (1986) A review of parasites as vectors of viral and bacterial diseases of fish. J Fish Dis 9(2):169–171CrossRefGoogle Scholar
  9. DeRosa MC, Crutchley RJ (2002) Photosensitized singlet oxygen and its applications. Coord Chem Rev 233:351–371CrossRefGoogle Scholar
  10. Erzinger GS et al (2011) Optimizing conditions for the use of chlorophyll derivatives for photodynamic control of parasites in aquatic ecosystems. Parasitol Res 109(3):781–786CrossRefPubMedGoogle Scholar
  11. Erzinger GS et al (2015) Assessment of the impact of chlorophyll derivatives to control parasites in aquatic ecosystems. Ecotoxicology 24(4):949–958CrossRefPubMedGoogle Scholar
  12. Farmer BD, Straus DL, Mitchell AJ, Beck BH, Fuller SA, Barnett LM (2014) Comparative effects of copper sulfate or potassium permanganate on channel catfish concurrently infected with Flavobacterium columnare and Ichthyobodo necator. J Appl Aquac 26(1):71–83CrossRefGoogle Scholar
  13. Fu Y-W, Zhang Q-Z, Xu D-H, Wang B, Liang J-H, Lin D-J (2015) Cynatratoside-C efficacy against theronts of Ichthyophthirius multifiliis, and toxicity tests on grass carp and mammal blood cells. Dis Aquat Org 117(1):13–20CrossRefPubMedGoogle Scholar
  14. Guha A, Aditya G, Saha SK (2013) Survivorship and fecundity of Argulus bengalensis (Crustacea; Branchiura) under laboratory conditions. Invertebr Reprod Dev 57(4):301–308CrossRefGoogle Scholar
  15. Häder D-P, Erzinger GS (2011) Non-toxic and biodegradable insecticide formulation. USA PatentGoogle Scholar
  16. Häder D-P, Lebert M, Marangoni R, Colombetti G (1999) ELDONET—European Light Dosimeter Network hardware and software. J Photochem Photobiol B Biol 52:51–58CrossRefGoogle Scholar
  17. Häder D-P, Schmidl J, Hilbig R, Oberle M, Wedekind H, Richter P (2015) Treatment of ichthyophthiriasis with photodynamically active chlorophyllin. Parasitology Research:1–9Google Scholar
  18. Hanzelova V, Zitnan R (1985) Epizootiologic importance of the concurrent monogenean invasions in the carp. Helminthologia 22(4):277–283Google Scholar
  19. Hasan T, Ortel B, Solban N, Pogue B (2003) Photodynamic therapy of cancer. Cancer Med 7:537–48Google Scholar
  20. Heaton JW, Marangoni AG (1996) Chlorophyll degradation in processed foods and senescent plant tissues. Trends Food Sci Technol 7(1):8–15CrossRefGoogle Scholar
  21. Kayis S, Balta F, Serezli R, Er A (2013) Parasites on different ornamental fish species in Turkey. J Fish Sci 7(2):114Google Scholar
  22. Klisch M, Sinha RP, Richter PR, Häder D-P (2001) Mycosporine-like amino acids (MAAs) protect against UV-B-induced damage in Gyrodinium dorsum Kofoid. J Plant Physiol 158:1449–1454CrossRefGoogle Scholar
  23. Koskivaara M, Valtonen E, Prost M (1991) Dactylogyrids on the gills of roach in Central Finland: features of infection and species composition. Int J Parasitol 21(5):565–572CrossRefPubMedGoogle Scholar
  24. Koyun M (2013) Seasonal distribution and ecology of some Dactylogyrus species infecting Alburnus alburnus and Carassius carassius (Osteichthyes: Cyprinidae) from Porsuk River, Turkey. Afr J Biotechnol 10(7):1154–1159Google Scholar
  25. Kumar A et al (2012) Antiparasitic efficacy of piperine against Argulus spp. on Carassius auratus (Linn. 1758): in vitro and in vivo study. Parasitol Res 111(5):2071–2076CrossRefPubMedGoogle Scholar
  26. Lichtenthaler HK, Wellburn AR (1983) Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. Biochem Soc Trans 11:591–592CrossRefGoogle Scholar
  27. Lom J, Dyková I (1992) Protozoan parasites of fishes, vol 26. Elsevier Science Publishers, AmsterdamGoogle Scholar
  28. Lu C, Zhang H-Y, Ji J, Wang G-X (2012) In vivo anthelmintic activity of Dryopteris crassirhizoma, Kochia scoparia, and Polygala tenuifolia against Dactylogyrus intermedius (Monogenea) in goldfish (Carassius auratus). Parasitol Res 110(3):1085–1090CrossRefPubMedGoogle Scholar
  29. Maceda-Veiga A, Cable J (2014) Efficacy of sea salt, metronidazole and formalin-malachite green baths in treating Ichthyophthirius multifiliis infections of mollies (Poecilia sphenops). Bull Eur Assoc Fish Pathol 34(5):182–186Google Scholar
  30. Mirzaei M, Khovand H (2015) Prevalence of Argulus foliaceus in ornamental fishes [goldfish (Carassius auratus) and Koi (Cyprinus carpio)] in Kerman, southeast of Iran. J Parasit Dis 39(4):780–782CrossRefPubMedGoogle Scholar
  31. Park YJ, Lee WY, Hahn BS, Han MJ, Yang WI, Kim BS (1989) Chlorophyll derivatives—a new photosensitizer for photodynamic therapy of cancer in mice. Yonsei Med J 30(3):212–218CrossRefPubMedGoogle Scholar
  32. Phromkunthong W, Nuntapong N, Boonyaratpalin M, Kiron V (2013) Toxicity of melamine, an adulterant in fish feeds: experimental assessment of its effects on tilapia. J Fish Dis 36(6):555–568CrossRefPubMedGoogle Scholar
  33. Reed PA, Francis-Floyd R, Klinger RC (2009) FA28/FA033: Monogenean parasites of fish. In: Electronic Data Information Source UF/IFAS Extension. http://edis.ifas.ufl.edu/FA033
  34. Reichenbach-Klinke H, Elkan E (2013) The principal diseases of lower vertebrates. Elsevier, AmsterdamGoogle Scholar
  35. Ridanovic S, Nedic Z, Ridanovic L (2015) First observation of fish condition from Sava river in Bosnia and Herzegovina. J Surv Fish Sci 1(2):27–32Google Scholar
  36. Rintamäki-Kinnunen P, Rahkonen M, Mannermaa-Keränen A-L, Suomalainen L-R, Mykrä H, Valtonen ET (2005) Treatment of ichthyophthiriasis after malachite green. I. Concrete tanks at salmonid farms. Dis Aquat Org 64(1):69–76CrossRefPubMedGoogle Scholar
  37. Scherz A, Salomon Y, Fiedor L (1994) Chlorophyll and bacteriochlorophyll derivatives, preparation and pharmaceutical compositions comprising them as photosensitizers for photodynamic therapy. Chem Abstr 120:386Google Scholar
  38. Sudova E, Machova J, Svobodova Z, Vesely T (2007) Negative effects of malachite green and possibilities of its replacement in the treatment of fish eggs and fish: a review. Vet Med 52(12):527Google Scholar
  39. Syihab MIMT, Suryanto D, Harahap ZA, Dhuha OR (2015) Bacterial isolate in gourami (Osphronemus gouramy) as the result of the infestation of ectoparasites Argulus sp. Aquacostamarine 8(3):14Google Scholar
  40. Wohllebe S (2010) Bekämpfung von Parasiten in aquatischen Ökosystemen mittels natürlicher Photosensitizer. PhD thesis, Friedrich-Alexander UniversitätGoogle Scholar
  41. Wohllebe S, Richter R, Richter P, Häder D-P (2009) Photodynamic control of human pathogenic parasites in aquatic ecosystems using chlorophyllin and pheophorbid as photodynamic substances. Parasitol Res 104(3):593–600CrossRefPubMedGoogle Scholar
  42. Wohllebe S et al (2011) Photodynamic treatment of Chaoborus crystallinus larvae with chlorophyllin induces necrosis and apoptosis. Photochem Photobiol 87(5):1113–1122CrossRefPubMedGoogle Scholar
  43. Wohllebe S, Richter P, Häder D-P (2012) Chlorophyllin for the control of Ichthyophthirius multifiliis (Fouquet). Parasitol Res 111(2):729–733CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • D.-P. Häder
    • 1
    Email author
  • J. Schmidl
    • 2
  • R. Hilbig
    • 3
  • M. Oberle
    • 4
  • H. Wedekind
    • 4
  • P. Richter
    • 5
  1. 1.Department of BiologyCell Biology, FAUMöhrendorfGermany
  2. 2.Developmental BiologyFriedrich-Alexander-University Erlangen-NurembergErlangenGermany
  3. 3.Zoological InstituteUniversity Stuttgart-HohenheimStuttgartGermany
  4. 4.Bavarian State Research Centre for AgricultureInstitute for FisheriesStarnbergGermany
  5. 5.Department of BiologyFriedrich-Alexander-University Erlangen-NurembergErlangenGermany

Personalised recommendations