Advertisement

Parasitology Research

, Volume 115, Issue 5, pp 1863–1869 | Cite as

Detection and molecular characterization of Cryptosporidium and Eimeria species in Philippine bats

  • Fumi Murakoshi
  • Frances C. Recuenco
  • Tsutomu Omatsu
  • Kaori Sano
  • Satoshi Taniguchi
  • Joseph S. Masangkay
  • Philip Alviola
  • Eduardo Eres
  • Edison Cosico
  • James Alvarez
  • Yumi Une
  • Shigeru Kyuwa
  • Yuki Sugiura
  • Kentaro KatoEmail author
Original Paper

Abstract

The genus Cryptosporidium, which is an obligate intracellular parasite, infects various vertebrates and causes a diarrheal disease known as cryptosporidiosis. Bats are naturally infected with zoonotic pathogens; thus, they are potential reservoirs of parasites. We investigated the species and genotype distribution as well as prevalence of Cryptosporidium and Eimeria in Philippine bats. We captured and examined 45 bats; four were positive for Cryptosporidium spp. and seven were positive for Eimeria spp. We detected Cryptosporidium bat genotype II from Ptenochirus jagori. Three other Cryptosporidium sequences, detected from Rhinolophus inops, Cynopterus brachyotis, and Eonycteris spelaea, could not be classified as any known species or genotype; we therefore propose the novel genotype Cryptosporidium bat genotypes V, VI, and VII. Bat genotype V is associated with human cryptosporidiosis clade, and therefore, this genotype may be transmissible to humans. Among the Eimeria sequences, BE3 detected from Scotophilus kuhlii was classified with known bat and rodent clades; however, other sequences detected from C. brachyotis, E. spelaea, Rousettus amplexicaudatus, and R. inops could not be classified with known Eimeria species. These isolates might represent a new genotype. Our findings demonstrate that the bats of the Philippines represent a reservoir of multiple Cryptosporidium and Eimeria spp.

Keywords

Bat Cryptosporidium Cryptosporidium bat genotype Eimeria 

Notes

Acknowledgments

This study was supported by a JSPS Research Fellowship for Young Scientists, Grants-in-Aid for Young Scientists, Exploratory Research, Scientific Research on Innovative Areas (3308) from the Ministry of Education, Culture, Science, Sports, and Technology (MEXT) of Japan, Bio-oriented Technology Research Advancement Institution (BRAIN), the Program to Disseminate Tenure Tracking System from the Japan Science and Technology Agency (JST), the Akiyama Life Science Foundation, the Kurozumi Medical Foundation, and the Mishima Kaiun Memorial Foundation.

References

  1. Afonso E, Baurand PE, Tournant P, Capelli N (2014) First amplification of Eimeria hessei DNA from the lesser horseshoe bat (Rhinolophus hipposideros) and its phylogenetic relationships with Eimeria species from other bats and rodents. Exp Parasitol 139:58–62CrossRefPubMedGoogle Scholar
  2. Calisher CH, Childs JE, Field HE, Holmes KV, Schountz T (2006) Bats: important reservoir hosts of emerging viruses. Clin Microbiol Rev 19:531–545CrossRefPubMedPubMedCentralGoogle Scholar
  3. Dubey JP, Hamir AN, Sonn RJ, Topper MJ (1998) Cryptosporidiosis in a bat (Eptesicus fuscus). J Parasitol 84:622–623CrossRefPubMedGoogle Scholar
  4. Duszynski DW, Wilber PG (1997) A guideline for the preparation of species descriptions in the Eimeriidae. J Parasitol 83:333–336CrossRefPubMedGoogle Scholar
  5. Fayer R, Morgan U, Upton SJ (2000) Epidemiology of Cryptosporidium: transmission, detection and identification. Int J Parasitol 30:1305–1322CrossRefPubMedGoogle Scholar
  6. Feng Y, Ortega Y, He G, Das P, Xu M, Zhang X, Fayer R, Gatei W, Cama V, Xiao L (2007) Wide geographic distribution of Cryptosporidium bovis and the deer-like genotype in bovines. Vet Parasitol 144:1–9CrossRefPubMedGoogle Scholar
  7. Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98Google Scholar
  8. Kváč M, Hořická A, Sak B, Prediger J, Salát J, Širmarová J, Bartonička T, Clark M, Chelladurai JR, Gillam E, McEvoy J (2015) Novel Cryptosporidium bat genotypes III and IV in bats from the USA and Czech Republic. Parasitol Res 114:3917–3921CrossRefPubMedGoogle Scholar
  9. Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ, Higgins DG (2007) Clustal W and Clustal X version 2.0. Bioinformatics 23:2947–2948CrossRefPubMedGoogle Scholar
  10. Levine ND (1982) Taxonomy and life cycles of coccidia. In: Long PL (ed) The biology of the coccidia. University Park Press, Baltimore, Maryland, pp 1–33Google Scholar
  11. Morgan UM, Sturdee AP, Singleton G, Gomez MS, Gracenea M, Torres J, Hamilton SG, Woodside DP, Thompson RC (1999) The Cryptosporidium “mouse” genotype is conserved across geographic areas. J Clin Microbiol 37:1302–1305PubMedPubMedCentralGoogle Scholar
  12. Mühldorfer K (2013) Bats and bacterial pathogens: a review. Zoonoses Public Health 60:93–103CrossRefPubMedGoogle Scholar
  13. Sulaiman IM, Lal AA, Xiao L (2002) Molecular phylogeny and evolutionary relationships of Cryptosporidium parasites at the actin locus. J Parasitol 88:388–94CrossRefPubMedGoogle Scholar
  14. Sulaiman IM, Hira PR, Zhou L, Al-Ali FM, Al-Shelahi FA, Shweiki HM, Iqbal J, Khalid N, Xiao L (2005) Unique endemicity of cryptosporidiosis in children in Kuwait. J Clin Microbiol 43:2805–2809CrossRefPubMedPubMedCentralGoogle Scholar
  15. Sun H, Wang Y, Zhang Y, Ge W, Zhang F, He B, Li Z, Fan Q, Wang W, Tu C, Li J, Liu Q (2013) Prevalence and genetic characterization of Toxoplasma gondii in bats in Myanmar. Appl Environ Microbiol 79:3526–3528CrossRefPubMedPubMedCentralGoogle Scholar
  16. Tamura K, Nei M (1993) Estimation of the number of nucleotide substitutions in the control region of mitochondrial DNA in humans and chimpanzees. Mol Biol Evol 10:512–526PubMedGoogle Scholar
  17. Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729CrossRefPubMedPubMedCentralGoogle Scholar
  18. Tavaré S (1986) Some probabilistic and statistical problems in the analysis of DNA sequences. In: Miura RM (ed) Some mathematical questions in biology—DNA sequence analysis. Am Math Soc Providence 17:57–86Google Scholar
  19. Valenzuela O, González-Díaz M, Garibay-Escobar A, Burgara-Estrella A, Cano M, Durazo M, Bernal RM, Hernandez J, Xiao L (2014) Molecular characterization of Cryptosporidium spp. in children from Mexico. PLoS One 9, e96128CrossRefPubMedPubMedCentralGoogle Scholar
  20. Wang W, Cao L, He B, Li J, Hu T, Zhang F, Fan Q, Tu C, Liu Q (2013) Molecular characterization of Cryptosporidium in bats from Yunnan Province, southwestern China. J Parasitol 99:1148–1150CrossRefPubMedGoogle Scholar
  21. Wang R, Zhang L, Axén C, Bjorkman C, Jian F, Amer S, Liu A, Feng Y, Li G, Lv C, Zhao Z, Qi M, Dong H, Wang H, Sun Y, Ning C, Xiao L (2014) Cryptosporidium parvum IId family: clonal population and dispersal from Western Asia to other geographical regions. Sci Rep 4:4208PubMedPubMedCentralGoogle Scholar
  22. Xiao L (2010) Molecular epidemiology of cryptosporidiosis: an update. Exp Parasitol 24:80–89CrossRefGoogle Scholar
  23. Zhao XM, Duszynski DW, Loker ES (2001) Phylogenetic position of Eimeria antrozoi, a bat coccidium (Apicomplexa:Eimeriidae) and its relationship to morphologically similar Eimeria spp. from bats and rodents based on nuclear 18S and plastid 23S rDNA sequences. J Parasitol 87:1120–1123CrossRefPubMedGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Fumi Murakoshi
    • 1
  • Frances C. Recuenco
    • 2
  • Tsutomu Omatsu
    • 3
  • Kaori Sano
    • 3
  • Satoshi Taniguchi
    • 4
  • Joseph S. Masangkay
    • 2
  • Philip Alviola
    • 5
  • Eduardo Eres
    • 5
  • Edison Cosico
    • 5
  • James Alvarez
    • 5
  • Yumi Une
    • 6
  • Shigeru Kyuwa
    • 7
  • Yuki Sugiura
    • 7
  • Kentaro Kato
    • 1
    Email author
  1. 1.National Research Center for Protozoan DiseasesObihiro University of Agriculture and Veterinary Medicine, Inada-choObihiroJapan
  2. 2.College of Veterinary MedicineUniversity of the Philippines Los BañosLos BañosPhilippines
  3. 3.Research and Education Center for Prevention of Global Infectious Disease of AnimalTokyo University of Agriculture and TechnologySaiwai, FuchuJapan
  4. 4.Department of Virology ISpecial Pathogens Laboratory, National Institute of Infectious DiseasesMusashimurayamaJapan
  5. 5.Museum of Natural HistoryUniversity of the Philippines Los BañosLos BañosPhilippines
  6. 6.Laboratory of Veterinary Pathology, School of Veterinary MedicineAzabu UniversitySagamiharaJapan
  7. 7.Department of Biomedical Science, Graduate School of Agricultural and Life SciencesThe University of TokyoBunkyo-kuJapan

Personalised recommendations