Description and molecular characterization of a new Leucocytozoon parasite (Haemosporida: Leucocytozoidae), Leucocytozoon californicus sp. nov., found in American kestrels (Falco sparverius sparverius)

Abstract

Diurnal raptors in the order Accipitriformes are commonly parasitized with Leucocytozoon spp., and the prevalence and intensity of parasitemia are often high. However, for raptors in Falconiformes, several studies have reported relatively low prevalences (1 % or less) of Leucocytozoon spp. Leucocytozoon parasite pathogenicity has been documented in falcons, but little is known about the diversity, prevalence, and phylogenetic relationships among Leucocytozoon species in these predatory birds. The research reported here combines molecular and microscopic techniques to identify and describe Leucocytozoon parasites in Falco sparverius sparverius, the American kestrel, and place those parasites into a phylogenetic context with leucocytozoids previously found in other diurnal raptors (Accipitriformes), owls (Strigiformes), passerines (Passeriformes), and other bird species. Of 35 American kestrels sampled, 13 birds (37.1 %) were found by PCR to harbor the DNA lineage of a novel species, Leucocytozoon californicus. No other Leucocytozoon parasite lineages were identified in our sample. Phylogenetic analysis revealed that this parasite clusters more closely with leucocytozoids found in owls and passerines than it does with leucocytozoids found in birds of the genera Buteo and Accipiter of the order Accipitriformes. This is the first described species of Leucocytozoon that parasitizes diurnal raptors in which gametocytes develop exclusively in roundish host blood cells. It is also the first Leucocytozoon species that is described and named in birds of the Falconiformes, in which, for unclear reasons, leucocytozoids are significantly less prevalent and less diverse than in raptors with a similar behavioral ecology belonging to the Accipitriformes.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    CAS  Article  PubMed  Google Scholar 

  2. Bennett GF, Whiteway M, Woodworth-Lynas C (1982) A host-parasite catalogue of the avian haematozoa. Mem Univ of Nfld Occ Pap Biol 5:1–243

    Google Scholar 

  3. Bennett GF, Earlé RA, Peirce M (1993) The Leucocytozoidae of South African birds: Falconiformes and Strigiformes. Ostrich 64:67–72

    Article  Google Scholar 

  4. Bensch S, Pérez-Tris J, Waldenström J, Hellgren O (2004) Linkage between nuclear and mitochondrial DNA sequences in Avian Malaria parasites: multiple cases of cryptic speciation? Evolution 58(7):1617–1621

    CAS  Article  PubMed  Google Scholar 

  5. Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol 9:1353–1358

    Article  Google Scholar 

  6. Bishop MA, Bennett GF (1989) The haemoproteids of the avian order Strigiformes. Can J Zool 67:2676–2684

    Article  Google Scholar 

  7. Borner J, Pick C, Thiede J, Kolawole OM, Kingsley MT, Schulze J, Cottontail VM, Wellinghausen N, Schmidt-Chanasit J, Bruchhaus I, Burmester T (2015) Phylogeney of haemosporidian blood parasites revealed by a multi-gene approach. Mol Phylogenet Evol. In press.

  8. Chakarov N, Linke B, Boerner M, Goesmann A, Krüger O, Hoffman JI (2015) Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite. Mol Ecol 6:1355–63. doi:10.1111/mec.13115

    Article  Google Scholar 

  9. Dawson RD, Bortolotti GR (1999) Prevalence and intensity of hematozoan infections in a population of American kestrels. Can J Zool 77:162–170

    Article  Google Scholar 

  10. Dawson RD, Bortolotti GR (2001) Sex-specific associations between reproductive output and hematozoan parasites of American kestrels. Oecologia 126:193–200

    Article  Google Scholar 

  11. Fallon SM, Ricklefs RE (2008) Parasitemia in PCR-detected Plasmodium and Haemoproteus infections in birds. J Avian Biol 39:514–522

    Article  Google Scholar 

  12. Forrester DJ, Greiner EC (2008) Leucocytozoonosis. In: Parasitic diseases of wild birds (ed. CT Atkinson, NJ Thomas & DB Hunter), Iowa, Wiley-Blackwell, pp 54–107

    Google Scholar 

  13. França C (1927) Notes Parasitologiques. J Sci Math 5((24):15–24, Fis Nat, Ser. 3

    Google Scholar 

  14. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12(6):543–548

    CAS  PubMed  Google Scholar 

  15. Garamszegi LZ (2010) The sensitivity of microscopy and PCR-based detection methods affecting estimates of prevalence of blood parasites in birds. J Parasitol 96(6):1197–1203

  16. Greiner EC, Kocan AA (1977) Leucocytozoon (Haemosporida; Leucocytozoidae) of the Falconiformes. Can J Zool 55(5):761–770

    CAS  Article  PubMed  Google Scholar 

  17. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768

    CAS  Article  PubMed  Google Scholar 

  18. Hellgren O (2005) The occurrence of haemosporidian parasites in the Fennoscandian bluethroat (Luscinia svecica) population. J Ornith 146:55–60

    Article  Google Scholar 

  19. Hellgren O, Waldenström J, Peréz-Tris J, Ösi ES, Hasselquist D, Krizanauskiene A, Ottosson U, Bensch S (2007) Detecting shifts of transmission areas in avian blood parasites — a phylogenetic approach. Mol Ecol 16:1281–1290. doi:10.1111/j.1365-294X.2007.03227.x

    Article  PubMed  Google Scholar 

  20. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755

    CAS  Article  PubMed  Google Scholar 

  21. Ishak HD, Dumbacher JP, Anderson NL, Keane JJ, Valkiūnas G, Haig SM, Tell LA, Sehgal RNM (2008) Blood Parasites in Owls with conservation implications for the spotted Owl (Strix occidentalis). PLoS One 3(5):E2304

    Article  PubMed  PubMed Central  Google Scholar 

  22. Jarvi SI, Schultz JJ, Atkinson CT (2002) PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J Parasitol 88:153–158

    Article  PubMed  Google Scholar 

  23. Jarvis ED et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346(6215):1320–1331

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  24. Korpimaki E, Tolonen P, Bennett GF (1995) Blood parasites, sexual selection and reproductive success of European kestrels. Ecoscience 2:335–343

    Google Scholar 

  25. Krone O, Waldenström J, Valkiūnas G, Lessow O, Müller K, Lezhova TA, Fickel J, Bensch S (2008) Haemosporidian blood parasites in European birds of prey and owls. J Parasitol 94(3):709–715

    CAS  Article  PubMed  Google Scholar 

  26. Lauron EJ, Loiseau C, Bowie RCK, Spicer G, Smith TB, Melo M, Sehgal RNM (2014) Coevolutionary patterns and diversification of avian malaria parasites in African sunbirds (Family Nectariniidae). Parasitol 142:635–647. doi:10.1017/S0031182014001681

    Article  Google Scholar 

  27. Livezey BC, Zusi RL (2007) Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linnean Soc 149:1–95

    Article  Google Scholar 

  28. Lotta IA, Gonzalez AD, Pacheco MA, Escalante AA, Valkiūnas G, Moncada LI, Matta NE (2015) Leucocytozoon pterotenuis sp. nov. (Haemosporida, Leucocytozoidae): description of the morphologically unique species from the Grallariidae birds, with remarks on the distribution of Leucocytozoon parasites in the Neotropics. Parasitol Res 114(3):1031–44. doi:10.1007/s00436-014-4269-y

    Article  PubMed  Google Scholar 

  29. Martinson ES, Paperna I, Schall JJ (2006) Morphological versus molecular identification of avian Haemosporidia: an exploration of three species concepts. Parasitol 133:279–288

    Article  Google Scholar 

  30. Mayr G, Manegold A, Johansson US (2003) Monophyletic groups within ‘higher land birds’ – comparison of morphological and molecular data. J Zool Syst Evol Research 41:233–248

    Article  Google Scholar 

  31. McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT (2013) A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS One 8(1):e54848

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  32. Murdock CC, Foufopoulos J, Simon CP (2013) A transmission model for the ecology of an avian blood parasite in a temperate ecosystem. PLoS One 8:e76126

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  33. Nylander JAA, Ronquist JP, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Systematic Biol 53:47–67

    Article  Google Scholar 

  34. Outlaw DC, Ricklefs RE (2011) On the phylogenetic relationship of Haemosporidian parasites from raptorial birds (Falconiformes and Strigiformes). J Parasitol 95(5):1171–1176

    Article  Google Scholar 

  35. Peirce MA, Bennett GF, Bishop M (1990) The haemoproteids of the avian order Falconiformes. J Nat Hist 24:1091–1100

    Article  Google Scholar 

  36. Perkins S, Schall JJ (2002) A molecular phylogeny of malaria parasites recovered from cytochrome b sequences. J Parasitol 8:972–978

    Article  Google Scholar 

  37. Raidal SR, Jaensch SM (2000) Central nervous disease and blindness in nankeen kestrels (Falco cenchroides) due to a novel Leucocytozoon-like infection. Avian Pathology 29:51–56

    Article  Google Scholar 

  38. Raidal SR, Jaensch SM, Ende J (1999) Preliminary report of a parasitic infection of the brain and eyes of a peregrine falcon Falco peregrinus and nankeen kestrels Falco centchroides in western Australia. Emu 99:291–292

    Article  Google Scholar 

  39. Richard FA, Sehgal RNM, Jones HI, Smith TB (2002) A comparative analysis of PCR-based detection methods for avian malaria. J Parasitol 88(4):819–822

    CAS  Article  PubMed  Google Scholar 

  40. Ricklefs RE, Fallon SM (2002) Diversification and host switching in avian malaria parasites. P R Soc London 269:885–892

    Article  Google Scholar 

  41. Ricklefs RE, Fallon SM, Bermingham E (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. System Biol 53:111–119

    Article  Google Scholar 

  42. Ricklefs RE, Outlaw DC, Svensson-Coelho M, Medeiros MCI, Ellis VA, Latta S (2014) Species formation by host shifting in avian malaria parasites. PNAS 111:14816–14821

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  43. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574

    CAS  Article  PubMed  Google Scholar 

  44. Sehgal RNM, Hull AC, Anderson NL, Valkiūnas G, Markovets MJ, Kawamura S, Tell LA (2006) Evidence for cryptic speciation of Leucocytozoon spp. (Haemosporida, Leucocytozoidae) in diurnal raptors. J Parasitol 92:375–379

    Article  PubMed  Google Scholar 

  45. Sibley CG, Ahlquist JE, Monroe BL Jr (1988) A classification of the living nirds of the world based on DNA-DNA hybridization studies. Auk 105(3):409–423

    Google Scholar 

  46. Swofford D (2001) PAUP* 4.0. Sinauer Associates

  47. Tarello W (2006) Leucocytozoon toddi in falcons from Kuwait: epidemiology, clinical signs and response to melarsomine. Parasite 13:97–180

    Article  Google Scholar 

  48. Tella JL, Forero MG, Gajon A, Hiraldo F, Donezar JA (1996) Absence of blood-parasitization effects on lesser kestrel fitness. Auk 113:253–256

    Article  Google Scholar 

  49. Valkiūnas G (1988) Parasitic Protozoa of the blood of birds in the USSR. (3. Leucocytozoidae of Passeriformes, Strigiformes, Anseriformes and Falconiformes) Lietuvos TSR MA darbai. C serija 2:114–131 (in Russian)

    Google Scholar 

  50. Valkiūnas G (1989) Occurrence and morphology of two types of Leucocytozoon toddi gametocytes in some palearctic Falconiformes. Lietuvos TSR MA darbai. C serija 4(108):46–50 (in Russian)

    Google Scholar 

  51. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca Raton

    Google Scholar 

  52. Valkiūnas G, Iezhova TA, Križanauskienė A, Palinauskas V, Sehgal RNM, Bensch S (2008) A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol 94:1395–1401

  53. Valkiūnas G, Iezhova TA, Loiseau C, Smith TB, Sehgal RNM (2009) New malaria parasites of the subgenus Novyella in African rainforest birds, with remarks on their high prevalence, classification and diagnostics. Parasitol Res 104:1061–1077

  54. Valkiūnas G, Sehgal RNM, Iezhova TA, Hull AC (2010) Identification of Leucocytozoon toddi group (Haemosporida, Leucocytozoidae), with remarks on the species taxonomy of leucocytozoids. J Parasitol 96(1):170–177

    Article  PubMed  Google Scholar 

  55. Zhao W, Liu J, Xu R, Zhang C, Pang Q, Chen X, Liu S, Hong L, Yuan J, Li X, Chen Y, Li J, Su XZ (2015) The gametocytes of Leucocytozoon sabrazesi infect chicken thrombocytes, not other blood cells. PLoS One. Jul 28;10(7):e0133478. doi: 10.1371/journal.pone.0133478. eCollection 2015. Erratum in: PLoS One. 2015;10(8):e0137490.

Download references

Acknowledgments

We gratefully acknowledge the Hopland Research and Extension Center, the University of California Blue Oak Ranch Reserve, and the Mitsui Ranch from the Sonoma Mountain Ranch Preservation Foundation for allowing us access to their facilities and sites. We also would like to thank all of the volunteers who helped us collect the samples used in this study. Field work performed for this study was made possible by funding from the Natural Reserve System Mildred E. Mathias Graduate Student Research Grant Program and the Museum of Vertebrate Zoology.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Erika Walther.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Table 1

Blood samples collected from Mendocino and Santa Clara Counties, CA from breeding American Kestrels (Falco sparverius sparverius) used in this study. (XLSX 11 kb)

Supplementary Table 2

Genetic distances between Leucocytozoon californicus and 20 other Leucocytozoon spp., as well as an outgroup (Plasmodium ashfordi). Genetic divergence is given as a percentage and was calculated using GTR + G distance analysis, based on 464 nucleotides of the cyt b gene. L. californicus is in bold type. (PDF 171 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Walther, E., Valkiūnas, G., Wommack, E.A. et al. Description and molecular characterization of a new Leucocytozoon parasite (Haemosporida: Leucocytozoidae), Leucocytozoon californicus sp. nov., found in American kestrels (Falco sparverius sparverius). Parasitol Res 115, 1853–1862 (2016). https://doi.org/10.1007/s00436-016-4925-5

Download citation

Keywords

  • Haemosporidia
  • Leucocytozoon californicus
  • American kestrel
  • Falconiformes