Parasitology Research

, Volume 115, Issue 5, pp 1853–1862 | Cite as

Description and molecular characterization of a new Leucocytozoon parasite (Haemosporida: Leucocytozoidae), Leucocytozoon californicus sp. nov., found in American kestrels (Falco sparverius sparverius)

  • Erika Walther
  • Gediminas Valkiūnas
  • Elizabeth A. Wommack
  • Rauri C. K. Bowie
  • Tatjana A. Iezhova
  • Ravinder N. M. Sehgal
Original Paper

Abstract

Diurnal raptors in the order Accipitriformes are commonly parasitized with Leucocytozoon spp., and the prevalence and intensity of parasitemia are often high. However, for raptors in Falconiformes, several studies have reported relatively low prevalences (1 % or less) of Leucocytozoon spp. Leucocytozoon parasite pathogenicity has been documented in falcons, but little is known about the diversity, prevalence, and phylogenetic relationships among Leucocytozoon species in these predatory birds. The research reported here combines molecular and microscopic techniques to identify and describe Leucocytozoon parasites in Falco sparverius sparverius, the American kestrel, and place those parasites into a phylogenetic context with leucocytozoids previously found in other diurnal raptors (Accipitriformes), owls (Strigiformes), passerines (Passeriformes), and other bird species. Of 35 American kestrels sampled, 13 birds (37.1 %) were found by PCR to harbor the DNA lineage of a novel species, Leucocytozoon californicus. No other Leucocytozoon parasite lineages were identified in our sample. Phylogenetic analysis revealed that this parasite clusters more closely with leucocytozoids found in owls and passerines than it does with leucocytozoids found in birds of the genera Buteo and Accipiter of the order Accipitriformes. This is the first described species of Leucocytozoon that parasitizes diurnal raptors in which gametocytes develop exclusively in roundish host blood cells. It is also the first Leucocytozoon species that is described and named in birds of the Falconiformes, in which, for unclear reasons, leucocytozoids are significantly less prevalent and less diverse than in raptors with a similar behavioral ecology belonging to the Accipitriformes.

Keywords

Haemosporidia Leucocytozoon californicus American kestrel Falconiformes 

Supplementary material

436_2016_4925_MOESM1_ESM.xlsx (11 kb)
Supplementary Table 1Blood samples collected from Mendocino and Santa Clara Counties, CA from breeding American Kestrels (Falco sparverius sparverius) used in this study. (XLSX 11 kb)
436_2016_4925_MOESM2_ESM.pdf (172 kb)
Supplementary Table 2Genetic distances between Leucocytozoon californicus and 20 other Leucocytozoon spp., as well as an outgroup (Plasmodium ashfordi). Genetic divergence is given as a percentage and was calculated using GTR + G distance analysis, based on 464 nucleotides of the cyt b gene. L. californicus is in bold type. (PDF 171 kb)

References

  1. Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410CrossRefPubMedGoogle Scholar
  2. Bennett GF, Whiteway M, Woodworth-Lynas C (1982) A host-parasite catalogue of the avian haematozoa. Mem Univ of Nfld Occ Pap Biol 5:1–243Google Scholar
  3. Bennett GF, Earlé RA, Peirce M (1993) The Leucocytozoidae of South African birds: Falconiformes and Strigiformes. Ostrich 64:67–72CrossRefGoogle Scholar
  4. Bensch S, Pérez-Tris J, Waldenström J, Hellgren O (2004) Linkage between nuclear and mitochondrial DNA sequences in Avian Malaria parasites: multiple cases of cryptic speciation? Evolution 58(7):1617–1621CrossRefPubMedGoogle Scholar
  5. Bensch S, Hellgren O, Pérez-Tris J (2009) MalAvi: a public database of malaria parasites and related haemosporidians in avian hosts based on mitochondrial cytochrome b lineages. Mol Ecol 9:1353–1358CrossRefGoogle Scholar
  6. Bishop MA, Bennett GF (1989) The haemoproteids of the avian order Strigiformes. Can J Zool 67:2676–2684CrossRefGoogle Scholar
  7. Borner J, Pick C, Thiede J, Kolawole OM, Kingsley MT, Schulze J, Cottontail VM, Wellinghausen N, Schmidt-Chanasit J, Bruchhaus I, Burmester T (2015) Phylogeney of haemosporidian blood parasites revealed by a multi-gene approach. Mol Phylogenet Evol. In press.Google Scholar
  8. Chakarov N, Linke B, Boerner M, Goesmann A, Krüger O, Hoffman JI (2015) Apparent vector-mediated parent-to-offspring transmission in an avian malaria-like parasite. Mol Ecol 6:1355–63. doi:10.1111/mec.13115 CrossRefGoogle Scholar
  9. Dawson RD, Bortolotti GR (1999) Prevalence and intensity of hematozoan infections in a population of American kestrels. Can J Zool 77:162–170CrossRefGoogle Scholar
  10. Dawson RD, Bortolotti GR (2001) Sex-specific associations between reproductive output and hematozoan parasites of American kestrels. Oecologia 126:193–200CrossRefGoogle Scholar
  11. Fallon SM, Ricklefs RE (2008) Parasitemia in PCR-detected Plasmodium and Haemoproteus infections in birds. J Avian Biol 39:514–522CrossRefGoogle Scholar
  12. Forrester DJ, Greiner EC (2008) Leucocytozoonosis. In: Parasitic diseases of wild birds (ed. CT Atkinson, NJ Thomas & DB Hunter), Iowa, Wiley-Blackwell, pp 54–107Google Scholar
  13. França C (1927) Notes Parasitologiques. J Sci Math 5((24):15–24, Fis Nat, Ser. 3Google Scholar
  14. Galtier N, Gouy M, Gautier C (1996) SEAVIEW and PHYLO_WIN: two graphic tools for sequence alignment and molecular phylogeny. Comput Appl Biosci 12(6):543–548PubMedGoogle Scholar
  15. Garamszegi LZ (2010) The sensitivity of microscopy and PCR-based detection methods affecting estimates of prevalence of blood parasites in birds. J Parasitol 96(6):1197–1203Google Scholar
  16. Greiner EC, Kocan AA (1977) Leucocytozoon (Haemosporida; Leucocytozoidae) of the Falconiformes. Can J Zool 55(5):761–770CrossRefPubMedGoogle Scholar
  17. Hackett SJ, Kimball RT, Reddy S, Bowie RCK, Braun EL, Braun MJ, Chojnowski JL, Cox WA, Han K-L, Harshman J, Huddleston CJ, Marks BD, Miglia KJ, Moore WS, Sheldon FH, Steadman DW, Witt CC, Yuri T (2008) A phylogenomic study of birds reveals their evolutionary history. Science 320:1763–1768CrossRefPubMedGoogle Scholar
  18. Hellgren O (2005) The occurrence of haemosporidian parasites in the Fennoscandian bluethroat (Luscinia svecica) population. J Ornith 146:55–60CrossRefGoogle Scholar
  19. Hellgren O, Waldenström J, Peréz-Tris J, Ösi ES, Hasselquist D, Krizanauskiene A, Ottosson U, Bensch S (2007) Detecting shifts of transmission areas in avian blood parasites — a phylogenetic approach. Mol Ecol 16:1281–1290. doi:10.1111/j.1365-294X.2007.03227.x CrossRefPubMedGoogle Scholar
  20. Huelsenbeck JP, Ronquist F (2001) MRBAYES: Bayesian inference of phylogeny. Bioinformatics 17:754–755CrossRefPubMedGoogle Scholar
  21. Ishak HD, Dumbacher JP, Anderson NL, Keane JJ, Valkiūnas G, Haig SM, Tell LA, Sehgal RNM (2008) Blood Parasites in Owls with conservation implications for the spotted Owl (Strix occidentalis). PLoS One 3(5):E2304CrossRefPubMedPubMedCentralGoogle Scholar
  22. Jarvi SI, Schultz JJ, Atkinson CT (2002) PCR diagnostics underestimate the prevalence of avian malaria (Plasmodium relictum) in experimentally-infected passerines. J Parasitol 88:153–158CrossRefPubMedGoogle Scholar
  23. Jarvis ED et al (2014) Whole-genome analyses resolve early branches in the tree of life of modern birds. Science 346(6215):1320–1331CrossRefPubMedPubMedCentralGoogle Scholar
  24. Korpimaki E, Tolonen P, Bennett GF (1995) Blood parasites, sexual selection and reproductive success of European kestrels. Ecoscience 2:335–343Google Scholar
  25. Krone O, Waldenström J, Valkiūnas G, Lessow O, Müller K, Lezhova TA, Fickel J, Bensch S (2008) Haemosporidian blood parasites in European birds of prey and owls. J Parasitol 94(3):709–715CrossRefPubMedGoogle Scholar
  26. Lauron EJ, Loiseau C, Bowie RCK, Spicer G, Smith TB, Melo M, Sehgal RNM (2014) Coevolutionary patterns and diversification of avian malaria parasites in African sunbirds (Family Nectariniidae). Parasitol 142:635–647. doi:10.1017/S0031182014001681 CrossRefGoogle Scholar
  27. Livezey BC, Zusi RL (2007) Higher-order phylogeny of modern birds (Theropoda, Aves: Neornithes) based on comparative anatomy. II. Analysis and discussion. Zool J Linnean Soc 149:1–95CrossRefGoogle Scholar
  28. Lotta IA, Gonzalez AD, Pacheco MA, Escalante AA, Valkiūnas G, Moncada LI, Matta NE (2015) Leucocytozoon pterotenuis sp. nov. (Haemosporida, Leucocytozoidae): description of the morphologically unique species from the Grallariidae birds, with remarks on the distribution of Leucocytozoon parasites in the Neotropics. Parasitol Res 114(3):1031–44. doi:10.1007/s00436-014-4269-y CrossRefPubMedGoogle Scholar
  29. Martinson ES, Paperna I, Schall JJ (2006) Morphological versus molecular identification of avian Haemosporidia: an exploration of three species concepts. Parasitol 133:279–288CrossRefGoogle Scholar
  30. Mayr G, Manegold A, Johansson US (2003) Monophyletic groups within ‘higher land birds’ – comparison of morphological and molecular data. J Zool Syst Evol Research 41:233–248CrossRefGoogle Scholar
  31. McCormack JE, Harvey MG, Faircloth BC, Crawford NG, Glenn TC, Brumfield RT (2013) A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS One 8(1):e54848CrossRefPubMedPubMedCentralGoogle Scholar
  32. Murdock CC, Foufopoulos J, Simon CP (2013) A transmission model for the ecology of an avian blood parasite in a temperate ecosystem. PLoS One 8:e76126CrossRefPubMedPubMedCentralGoogle Scholar
  33. Nylander JAA, Ronquist JP, Huelsenbeck JP, Nieves-Aldrey JL (2004) Bayesian phylogenetic analysis of combined data. Systematic Biol 53:47–67CrossRefGoogle Scholar
  34. Outlaw DC, Ricklefs RE (2011) On the phylogenetic relationship of Haemosporidian parasites from raptorial birds (Falconiformes and Strigiformes). J Parasitol 95(5):1171–1176CrossRefGoogle Scholar
  35. Peirce MA, Bennett GF, Bishop M (1990) The haemoproteids of the avian order Falconiformes. J Nat Hist 24:1091–1100CrossRefGoogle Scholar
  36. Perkins S, Schall JJ (2002) A molecular phylogeny of malaria parasites recovered from cytochrome b sequences. J Parasitol 8:972–978CrossRefGoogle Scholar
  37. Raidal SR, Jaensch SM (2000) Central nervous disease and blindness in nankeen kestrels (Falco cenchroides) due to a novel Leucocytozoon-like infection. Avian Pathology 29:51–56CrossRefGoogle Scholar
  38. Raidal SR, Jaensch SM, Ende J (1999) Preliminary report of a parasitic infection of the brain and eyes of a peregrine falcon Falco peregrinus and nankeen kestrels Falco centchroides in western Australia. Emu 99:291–292CrossRefGoogle Scholar
  39. Richard FA, Sehgal RNM, Jones HI, Smith TB (2002) A comparative analysis of PCR-based detection methods for avian malaria. J Parasitol 88(4):819–822CrossRefPubMedGoogle Scholar
  40. Ricklefs RE, Fallon SM (2002) Diversification and host switching in avian malaria parasites. P R Soc London 269:885–892CrossRefGoogle Scholar
  41. Ricklefs RE, Fallon SM, Bermingham E (2004) Evolutionary relationships, cospeciation, and host switching in avian malaria parasites. System Biol 53:111–119CrossRefGoogle Scholar
  42. Ricklefs RE, Outlaw DC, Svensson-Coelho M, Medeiros MCI, Ellis VA, Latta S (2014) Species formation by host shifting in avian malaria parasites. PNAS 111:14816–14821CrossRefPubMedPubMedCentralGoogle Scholar
  43. Ronquist F, Huelsenbeck JP (2003) MRBAYES 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574CrossRefPubMedGoogle Scholar
  44. Sehgal RNM, Hull AC, Anderson NL, Valkiūnas G, Markovets MJ, Kawamura S, Tell LA (2006) Evidence for cryptic speciation of Leucocytozoon spp. (Haemosporida, Leucocytozoidae) in diurnal raptors. J Parasitol 92:375–379CrossRefPubMedGoogle Scholar
  45. Sibley CG, Ahlquist JE, Monroe BL Jr (1988) A classification of the living nirds of the world based on DNA-DNA hybridization studies. Auk 105(3):409–423Google Scholar
  46. Swofford D (2001) PAUP* 4.0. Sinauer AssociatesGoogle Scholar
  47. Tarello W (2006) Leucocytozoon toddi in falcons from Kuwait: epidemiology, clinical signs and response to melarsomine. Parasite 13:97–180CrossRefGoogle Scholar
  48. Tella JL, Forero MG, Gajon A, Hiraldo F, Donezar JA (1996) Absence of blood-parasitization effects on lesser kestrel fitness. Auk 113:253–256CrossRefGoogle Scholar
  49. Valkiūnas G (1988) Parasitic Protozoa of the blood of birds in the USSR. (3. Leucocytozoidae of Passeriformes, Strigiformes, Anseriformes and Falconiformes) Lietuvos TSR MA darbai. C serija 2:114–131 (in Russian)Google Scholar
  50. Valkiūnas G (1989) Occurrence and morphology of two types of Leucocytozoon toddi gametocytes in some palearctic Falconiformes. Lietuvos TSR MA darbai. C serija 4(108):46–50 (in Russian)Google Scholar
  51. Valkiūnas G (2005) Avian malaria parasites and other haemosporidia. CRC Press, Boca RatonGoogle Scholar
  52. Valkiūnas G, Iezhova TA, Križanauskienė A, Palinauskas V, Sehgal RNM, Bensch S (2008) A comparative analysis of microscopy and PCR-based detection methods for blood parasites. J Parasitol 94:1395–1401Google Scholar
  53. Valkiūnas G, Iezhova TA, Loiseau C, Smith TB, Sehgal RNM (2009) New malaria parasites of the subgenus Novyella in African rainforest birds, with remarks on their high prevalence, classification and diagnostics. Parasitol Res 104:1061–1077Google Scholar
  54. Valkiūnas G, Sehgal RNM, Iezhova TA, Hull AC (2010) Identification of Leucocytozoon toddi group (Haemosporida, Leucocytozoidae), with remarks on the species taxonomy of leucocytozoids. J Parasitol 96(1):170–177CrossRefPubMedGoogle Scholar
  55. Zhao W, Liu J, Xu R, Zhang C, Pang Q, Chen X, Liu S, Hong L, Yuan J, Li X, Chen Y, Li J, Su XZ (2015) The gametocytes of Leucocytozoon sabrazesi infect chicken thrombocytes, not other blood cells. PLoS One. Jul 28;10(7):e0133478. doi: 10.1371/journal.pone.0133478. eCollection 2015. Erratum in: PLoS One. 2015;10(8):e0137490.

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Erika Walther
    • 1
  • Gediminas Valkiūnas
    • 2
  • Elizabeth A. Wommack
    • 3
    • 4
  • Rauri C. K. Bowie
    • 3
  • Tatjana A. Iezhova
    • 2
  • Ravinder N. M. Sehgal
    • 1
  1. 1.Department of BiologySan Francisco State UniversitySan FranciscoUSA
  2. 2.Nature Research CentreVilniusLithuania
  3. 3.Museum of Vertebrate Zoology and Department of Integrative BiologyUniversity of CaliforniaBerkeleyUSA
  4. 4.University of Wyoming Museum of Vertebrates and Department of Zoology and Physiology, University of WyomingLaramieUSA

Personalised recommendations