Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control

Abstract

Mosquito vectors are responsible for transmitting diseases such as malaria, dengue, chikungunya, Japanese encephalitis, dengue, and lymphatic filariasis. The use of synthetic insecticides to control mosquito vectors has caused physiological resistance and adverse environmental effects, in addition to high operational cost. Biosynthesis of silver nanoparticles has been proposed as an alternative to traditional control tools. In the present study, green synthesis of silver nanoparticles (AgNPs) using aqueous leaf extract of Bauhinia variegata by reduction of Ag+ ions from silver nitrate solution has been investigated. The bioreduced silver nanoparticles were characterized by UV–visible spectrophotometry, Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy-dispersive X-ray analysis (EDX), and X-ray diffraction analysis (XRD). Leaf extract and synthesized AgNPs were evaluated against the larvae of Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Compared to aqueous extract, synthesized AgNPs showed higher toxicity against An. subpictus, Ae. albopictus, and Cx. tritaeniorhynchus with LC50 and LC90 values of 41.96, 46.16, and 51.92 μg/mL and 82.93, 89.42, and 97.12 μg/mL, respectively. Overall, this study proves that B. variegata is a potential bioresource for stable, reproducible nanoparticle synthesis and may be proposed as an efficient mosquito control agent.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  2. Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  3. Amer A, Mehlhorn H (2006c) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477

    Article  PubMed  Google Scholar 

  4. Amer A, Mehlhorn H (2006d) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99:491–499

    Article  PubMed  Google Scholar 

  5. Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2015) Mico-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci. doi:10.1007/s10340-015-0675-x

    Google Scholar 

  6. Amerasinghe PH, Amerasinghe FP (1999) Multiple host feeding in field populations of Anopheles culicifacies and Anopheles subpictus in Sri Lanka. Med Vet Entomol 13(2):124–131

    Article  CAS  PubMed  Google Scholar 

  7. Arjunan NK, Murugan K, Rejeeth C, Madhiyazhagan P, Barnard DR (2012) Green synthesis of silver nanoparticles for the control of mosquito vectors of malaria, filariasis, and dengue. Vector Borne Zoonotic Dis 12(3):262–268

    Article  PubMed  Google Scholar 

  8. Azizullah A, Rehman ZU, Ali I, Murad W, Muhammad N, Ullah W, Hader D-P (2014) Chlorophyll derivatives can be an efficient weapon in the fight against dengue. Parasitol Res 113:4321–4326

    Article  PubMed  Google Scholar 

  9. Benedict MQ, Levine RS, Hawley WA, Lounibos LP (2007) Spread of the tiger: global risk of invasion by the mosquito Aedes albopictus. Vect Born Zoon Dis 7:76–85

    Article  Google Scholar 

  10. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114:2801–2805

    Article  PubMed  Google Scholar 

  11. Benelli G (2015b) Plant-borne ovicides in the fight against mosquito vectors of medical and veterinary importance: a systematic review. Parasitol Res 114:3201–3212

    Article  PubMed  Google Scholar 

  12. Benelli G (2016) Plant-synthesized nanoparticles: an eco-friendly tool against mosquito vectors? Springer International Publishing Switzerland, H. Mehlhorn (ed.), Nanoparticles in the Fight Against Parasites - Parasitology Research Monographs Chapter 8, doi:10.1007/978-3-319-25292-6_8 (ISSN: 2192-3671)

  13. Benelli G, Flamini G, Fiore G, Cioni PL, Conti B (2013a) Larvicidal and repellent activity of the essential oil of Coriandrum sativum L. (Apiaceae) fruits against the filariasis vector Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 112:1155–1161

    Article  PubMed  Google Scholar 

  14. Benelli G, Canale A, Conti B (2013b) Eco-friendly control strategies against the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae): repellency and toxic activity of plant essential oils and extracts. Pharmacologyonline 47:44–51

    Google Scholar 

  15. Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114:227–236

    Article  PubMed  Google Scholar 

  16. Benelli G, Bedini S, Flamini G, Cosci F, Cioni PL, Amira S, Benchikh F, Laouer H, Di Giuseppe G, Conti B (2015b) Mediterranean essential oils as effective weapons against the West Nile vector Culex pipiens and the Echinostoma intermediate host Physella acuta: what happens around? An acute toxicity survey on non-target mayflies. Parasitol Res 114:1011–1021

    Article  PubMed  Google Scholar 

  17. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015c) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397

    Article  PubMed  Google Scholar 

  18. Bhattacharyya A, Bhaumik A, Rani PU, Mandal S, Epidi TT (2010) Nanoparticles—a recent approach to insect pest control. Afr J Biotechnol 9:3489–3493

    CAS  Google Scholar 

  19. Caminade C, Medlock JM, Ducheyne E, McIntryre KM, Leach S, Baylis M, Morse A (2012) Suitability of European climate for the Asian tiger mosquito Aedes albopictus: recent trends and future scenarios. J R Soc Interface 9:2708–2717

    PubMed Central  Article  PubMed  Google Scholar 

  20. Cavalcanti ESB, Morais SM, Lima MAA, Santana EWP (2004) Larvicidal activity of essential oils from Brazilian plants against Aedes aegypti L. Mem Inst Oswaldo Cruz 99:541–544

    Article  CAS  PubMed  Google Scholar 

  21. Chansang U, Zahiri NS, Bansiddhi J, Boonruad T, Thongsrirak P, Mingmuang J (2005) Mosquito larvicidal activity of aqueous extracts of long pepper (Piper retrofractum Vahl) from Thailand. J Vector Ecol 30:195–200

    PubMed  Google Scholar 

  22. Cheng SS, Chang HT, Chang ST, Tsai KH, Chen WJ (2003) Bioactivity of selected plant essential oils against the yellow fever mosquito Aedes aegypti larvae. Bioresour Technol 89:99–102

    Article  CAS  PubMed  Google Scholar 

  23. Chowdhury N, Chatterjee SK, Laskar S, Chandra G (2009) Larvicidal activity of Solanum villosum Mill (Solanaceae: Solanales) leaves to Anopheles subpictus Grassi (Diptera: Culicidae) with effect on non-target Chironomus circumdatus Kieffer (Diptera: Chironomidae). J Pest Sci 82:13–18

    Article  Google Scholar 

  24. Conti B, Benelli G, Flamini G, Cioni PL, Profeti R, Ceccarini L, Macchia M, Canale A (2012) Larvicidal and repellent activity of Hyptis suaveolens (Lamiaceae) essential oil against the mosquito Aedes albopictus Skuse (Diptera: Culicidae). Parasitol Res 110:2013–2021

    Article  PubMed  Google Scholar 

  25. Das NG, Nath DR, Baruah I (2000) Field evaluation of herbal mosquito repellents. J Comb Des 31(4):241–245

    Google Scholar 

  26. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529

    Article  PubMed  Google Scholar 

  27. Elumalai EK, Prasad TN, Hemachandran J, Therasa VS, Thirumalai T, David E (2010) Extracellular synthesis of silver nanoparticles using leaves of Euphorbia hirta and their antibacterial activities. J Pharm Sci Res 2:549–554

    CAS  Google Scholar 

  28. Finney DJ (1971) Probit analysis, vol 551. Cambridge University Press, London, pp 68–72

    Google Scholar 

  29. Frederich M, Dogné JM, Angenot L, DeMol P (2002) New trends in antimalarial agents. Curr Med Chem 9:1435–1456

    Article  CAS  PubMed  Google Scholar 

  30. Georges K, Jayaprakasam B, Dalavoy SS, Nair MG (2008) Pest-managing activities of plant extracts and anthraquinones from Cassia nigricans from Burkina Faso. Bioresour Technol 99:2037–2045

    Article  CAS  PubMed  Google Scholar 

  31. Govindarajan M (2010a) Larvicidal and repellent activities of Sida acuta Burm. F. (family: Malvaceae) against three important vector mosquitoes. Asia Pac J Trop Med 3:691–695

    Article  Google Scholar 

  32. Govindarajan M (2010b) Chemical composition and larvicidal activity of leaf essential oil from Clausena anisata (willd.) Hook. F. Benth (Rutaceae) against three mosquito species. Asia Pac J Trop Med 3:874–877

    Article  CAS  Google Scholar 

  33. Govindarajan M (2011a) Mosquito larvicidal and ovicidal activity of Cardiospermum halicacabum Linn. (family: Sapindaceae) leaf extract against Culex quinquefasciatus (say.) and Aedes aegypti (Linn.) (Diptera: Culicidae). Eur Rev Med Pharmacol Sci 15(7):787–794

    CAS  PubMed  Google Scholar 

  34. Govindarajan M (2011b) Larvicidal and repellent properties of some essential oils against Culex tritaeniorhynchus Giles and Anopheles subpictus Grassi (Diptera: Culicidae). Asia Pac J Trop Med 4(2):106–111

    Article  CAS  Google Scholar 

  35. Govindarajan M, Jebanesan A, Pushpanathan T (2008) Larvicidal and ovicidal activity of Cassia fistula Linn. Leaf extract against filarial and malarial vector mosquitoes. Parasitol Res 102:289–292

    Article  CAS  PubMed  Google Scholar 

  36. Govindarajan M, Mathivanan T, Elumalai K, Krishnappa K, Anandan A (2011a) Mosquito larvicidal, ovicidal and repellent properties of botanical extracts against Anopheles stephensi, Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 109:353–367

    Article  CAS  PubMed  Google Scholar 

  37. Govindarajan M, Sivakumar R, Rajeswari M, Yogalakshmi K (2011b) Chemical composition and larvicidal activity of essential oil from Mentha spicata (Linn.) against three mosquito species. Parasitol Res 110:2023–2032

    Article  PubMed  Google Scholar 

  38. Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K (2013) Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol 134:7–11

    Article  CAS  PubMed  Google Scholar 

  39. Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627

    Article  PubMed  Google Scholar 

  40. Keiser J, Maltese MF, Erlanger TE, Bos R, Tanner M, Singer BH, Utzinger J (2005) Effect of irrigated rice agriculture on Japanese encephalitis, including challenges and opportunities for integrated vector management. Acta Trop 95:40–57

    Article  PubMed  Google Scholar 

  41. Kimbaris AC, Koliopoulos G, Michaelakis A, Konstantopoulou MA (2012) Bioactivity of Dianthus caryophyllus, Lepidium sativum, Pimpinella anisum, and Illicium verum essential oils and their major components against the West Nile vector Culex pipiens. Parasitol Res 111:2403–2410

    Article  PubMed  Google Scholar 

  42. Liu ZL, He Q, Chu SS, Wang CF, Du SS, Deng ZW (2012) Essential oil composition and larvicidal activity of Saussurea lappa roots against the mosquito Aedes albopictus (Diptera: Culicidae). Parasitol Res 110:2125–2130

    Article  PubMed  Google Scholar 

  43. Marimuthu S, Rahuman AA, Rajakumar G, Santhoshkumar T, Kirthi AV, Jayaseelan C, Bagavan A, Zahir AA, Elango G, Kamaraj C (2011) Evaluation of green synthesized silver nanoparticles against parasites. Parasitol Res 108(6):1541–1549

    Article  PubMed  Google Scholar 

  44. Mehlhorn H (2008) Encyclopedia of parasitology, 3rd edn. Springer, Heidelberg

    Google Scholar 

  45. Mehlhorn H (ed) (2011) Nature helps. How plants and other organisms contribute to solve health problems. Parasitol Res monographs. Springer, Berlin, pp 1–372

    Google Scholar 

  46. Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95:363–365

    Article  PubMed  Google Scholar 

  47. Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265

    Article  PubMed  Google Scholar 

  48. Miao AJ, Luo Z, Chen CS, Chin WC, Santschi PH, Quigg A (2010) Intracellular uptake: a possible mechanism for silver engineered nanoparticle toxicity to a freshwater alga Ochromonas danica. PLoS One 5:15196

    Article  Google Scholar 

  49. Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114(6):2243–2253

    Article  PubMed  Google Scholar 

  50. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

    Article  CAS  PubMed  Google Scholar 

  51. Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015c) Enhanced predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res. doi:10.1007/s00436-015-4582-0

    Google Scholar 

  52. Murugan K, Venus JSE, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Suresh U, Benelli G (2015d) Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Pollut Res. doi:10.1007/ s11356-015-4920-x

    Google Scholar 

  53. Muthukumaran U, Govindarajan M, Rajeswary M, Hoti SL (2015) Synthesis and characterization of silver nanoparticles using Gmelina asiatica leaf extract against filariasis, dengue, and malaria vector mosquitoes. Parasitol Res 114(5):1817–1827

    Article  PubMed  Google Scholar 

  54. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunkhe BK (2012) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and non target fish Poecillia reticulata. Parasitol Res 111(2):555–562

    Article  PubMed  Google Scholar 

  55. Paupy C, Delatte H, Bagny L, Corbel V, Fontenille D (2009) Aedes albopictus, an arbovirus vector: from the darkness to light. Microbiol Infect 11:1177–1185

    Article  CAS  Google Scholar 

  56. Ponarulselvam S, Panneerselvam C, Murugan K, Aarthi N, Kalimuthu K, Thangamani S (2012) Synthesis of silver nanoparticles using leaves of Catharanthus roseus Linn G. Don and their antiplasmodial activities. Asia Pac J Trop Biomed 2(7):574–580

    Article  CAS  Google Scholar 

  57. Priyadarshini K, Murugan K, Panneerselvam C, Ponarulselvam S, Hwang J-S, Nicoletti M (2012) Biolarvicidal and pupicidal potential of silver nanoparticles synthesized using Euphorbia hirta against Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 111(3):997–1006

    Article  PubMed  Google Scholar 

  58. Rahuman AA, Gopalarkrishnan G, Saleem G, Arumrgam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71:553–555

    Article  CAS  PubMed  Google Scholar 

  59. Ravi V, Vanajakshi S, Gowda A, Chandramuki A (1989) A laboratory diagnosis of Japanese encephalitis using monoclonal antibodies and correlation of findings with the outcome. J Med Virol 29:221–223

    Article  CAS  PubMed  Google Scholar 

  60. Roni M, Murugan K, Panneerselvam C, Subramaniam J, Hwang JS (2013) Evaluation of leaf aqueous extract and synthesized silver nanoparticles using Nerium oleander against Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:981–990

    Article  PubMed  Google Scholar 

  61. Salunkhe RB, Patil SV, Patil CD, Salunke BK (2011) Larvicidal potential of silver nanoparticles synthesized using fungus Cochliobolus lunatus against Aedes aegypti (Linnaeus, 1762) and Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 109:823–831

    Article  PubMed  Google Scholar 

  62. Santhoshkumar T, Rahuman AA, Rajakumar G, Marimuthu S, Bagavan A, Jayaseelan C, Zahir AA, Elango G, Kamaraj C (2011) Synthesis of silver nanoparticles using Nelumbo nucifera leaf extract and its larvicidal activity against malaria and filariasis vectors. Parasitol Res 108:693–702

    Article  PubMed  Google Scholar 

  63. Sathyavathi R, Balamurali Krishna M, Venugopal Rao S, Saritha R, Narayana Rao D (2010) Biosynthesis of silver nanoparticles using Coriandrum sativum leaf extract and their application in nonlinear optics. Adv Sci Lett 3:1–6

    Article  Google Scholar 

  64. Semmler M, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn H (2009) Nature helps: from research to products against blood sucking arthropods. Parasitol Res 105:1483–1487

    Article  PubMed  Google Scholar 

  65. Senthilkumar N, Varma P, Gurusubramanian G (2009) Larvicidal and adulticidal activities of some medicinal plants against the malarial vector, Anopheles stephensi (Liston). Parasitol Res 104:237–244

    Article  CAS  PubMed  Google Scholar 

  66. Sinha S, Pan I, Chanda P, Sen SK (2009) Nanoparticles fabrication using ambient biological resources. J Appl Biol Sci 19:1113–1130

    Google Scholar 

  67. Soni N, Prakash S (2012) Efficacy of fungus mediated silver and gold nanoparticles against Aedes aegypti larvae. Parasitol Res 110:175–184

    Article  PubMed  Google Scholar 

  68. Suman DS, Shrivastava AR, Parashar BD, Pant SC, Agrawal OP, Prakash S (2008) Scanning electron microscopic studies on egg surface morphology and morphometrics of Culex tritaeniorhynchus and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 104:173–176

    Article  CAS  PubMed  Google Scholar 

  69. Sumroiphon S, Yuwaree C, Arunlertaree C, Komalamisra N, Rongsriyam Y (2006) Bioactivity of citrus seed for mosquito-borne diseases larval control. Southeast Asian J Trop Med Public Health 37(3):123–127

    PubMed  Google Scholar 

  70. Tiwary M, Naik SN, Tewaryb DK, Mittalc PK, Yadavc S (2007) Chemical composition and larvicidal activities of the essential oil of Zanthoxylum armatum DC (Rutaceae) against three mosquito vectors. J Vector Borne Dis 44:198–204

    CAS  PubMed  Google Scholar 

  71. Veerekumar K, Govindarajan M, Rajeswary M (2013) Green synthesis of silver nanoparticles using Sida acuta (Malvaceae) leaf extract against Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112(12):4073–4085

    Article  Google Scholar 

  72. Veerekumar K, Govindarajan M, Rajeswary M (2014) Low-cost and ecofriendly green synthesis of silver nanoparticles using Feronia elephantum (Rutaceae) against Culex quinquefasciatus, Anopheles stephensi, and Aedes aegypti (Diptera: Culicidae). Parasitol Res 113:1775–1785

    Article  Google Scholar 

  73. WHO (2014) Malaria. Fact sheet no. 94

  74. World Health Organization (2005) Guidelines for laboratory and field testing of mosquito larvicides. Communicable disease control, prevention and eradication, WHO pesticide evaluation scheme. WHO, Geneva, WHO/CDS/WHOPES/GCDPP/1.3

    Google Scholar 

  75. Yadav R, Srivastava VK, Chandra R, Singh A (2002) Larvicidal activity of latex and stem bark of Euphorbia tirucalli plant on the mosquito Culex quinquefasciatus. J Commun Dis 34:264–269

    PubMed  Google Scholar 

  76. Yenesew A, Derese S, Midiwo JO, Heydenreich M, Peter MG (2003) Effect of rotenoids from the seeds of Millettia dura on larvae of Aedes aegypti. Pest Manag Sci 59:1159–1161

    Article  CAS  PubMed  Google Scholar 

  77. Zhu L, Tian Y (2011) Chemical composition and larvicidal activity of Blumea densiflora essential oils against Anopheles anthropophagus: a malarial vector mosquito. Parasitol Res 109:1417–1422

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Professor and the Head of the Department of Zoology, Annamalai University, for the laboratory facilities provided. The authors would also like to acknowledge the cooperation of staff members of the VCRC (ICMR), Pondicherry.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Marimuthu Govindarajan or Giovanni Benelli.

Ethics declarations

Ethical Approval

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Conflicts of interest

The authors declare that they have no competing interests. Heinz Mehlhorn and Giovanni Benelli are Editor in Chief and Editorial Board Member of Parasitology Research, respectively. This does not alter the authors’ adherence to all the Parasitology Research policies on sharing data and materials.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Govindarajan, M., Rajeswary, M., Veerakumar, K. et al. Novel synthesis of silver nanoparticles using Bauhinia variegata: a recent eco-friendly approach for mosquito control. Parasitol Res 115, 723–733 (2016). https://doi.org/10.1007/s00436-015-4794-3

Download citation

Keywords

  • Arbovirus
  • Eco-friendly larvicide
  • Japanese encephalitis
  • Malaria
  • Mosquito-borne diseases
  • Nanotechnology