Skip to main content
Log in

Cooling water of power plant creates “hot spots” for tropical fishes and parasites

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Thermally altered water bodies can function as “hot spots” where non-native species are establishing self-sustaining populations beyond their tropical and subtropical native regions. Whereas many tropical fish species have been found in these habitats, the introduction of non-native parasites often remains undetected. Here, n = 77 convict cichlids (Amatitlania nigrofasciata) were sampled by electro-fishing at two sites from a thermally altered stream in Germany and examined for parasite fauna and feeding ecology. Stomach content analysis suggests an opportunistic feeding strategy of A. nigrofasciata: while plant material dominated the diet at the warm water inlet (∼30 °C), relative contributions of insects, plants, and crustaceans were balanced 3 km downstream (∼27 °C). The most abundant non-native parasite species was the tropical nematode Camallanus cotti with P = 11.90 % and P = 80.00 % at the inlet and further downstream, respectively. Additionally, nematode larvae of Anguillicoloides crassus and one specimen of the subtropical species Bothriocephalus acheilognathi were isolated. A. nigrofasciata was also highly infected with the native parasite Acanthocephalus anguillae, which could be linked to high numbers of the parasite’s intermediate host Asellus aquaticus. The aim of this study was to highlight the risk and consequences of the release and establishment of ornamental fish species for the introduction and spread of non-indigenous metazoan parasites using the convict cichlid as a model species. Furthermore, the spread of non-native parasites into adjacent fish communities needs to be addressed in the future as first evidence of Camallanus cotti in native fish species was also found.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Aarestrup K, Okland F, Hansen MM et al (2009) Oceanic spawning migration of the European eel (Anguilla anguilla). Science 325:1660. doi:10.1126/science.1178120

    Article  CAS  PubMed  Google Scholar 

  • Amundsen P-A, Gabler H-M, Staldvik FJ (1996) A new approach to graphical analysis of feeding strategy from stomach contents data—modification of the Costello (1990) method. J Fish Biol 48:607–614. doi:10.1111/j.1095-8649.1996.tb01455.x

    Google Scholar 

  • Brattey J (1986) Life history and population biology of larval Acanthocephalus lucii (Acanthocephala: Echinorhynchidae) in the isopod Asellus aquaticus. J Parasitol 72:633. doi:10.2307/3281450

    Article  CAS  PubMed  Google Scholar 

  • Brown AF, Chubb JC, Veltkamp CJ (1986) A key to the species of Acanthocephala parasitic in British freshwater fishes. J Fish Biol 28:327–334

    Article  Google Scholar 

  • Busch MW, Kuhn T, Münster J, Klimpel S (2012) Marine crustaceans as potential hosts and vectors for metazoan parasites. In: Mehlhorn H (ed) Arthropods as vectors of emerging diseases. Springer, Berlin, pp 329–360

    Chapter  Google Scholar 

  • Bush AO, Lafferty KD, Lotz JM, Shostak AW (1997) Parasitology meets ecology on its own terms: Margolis et al. revisited. J Parasitol 83:575–583. doi:10.2307/3284227

    Article  CAS  PubMed  Google Scholar 

  • Conn DB (2014) Aquatic invasive species and emerging infectious disease threats: a one health perspective. Aquat Invasions 9:383–390. doi:10.3391/ai.2014.9.3.12

    Article  Google Scholar 

  • Deacon AE, Ramnarine IW, Magurran AE (2011) How reproductive ecology contributes to the spread of a globally invasive fish. PLoS One 6, e24416. doi:10.1371/journal.pone.0024416

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dezfuli BS, Rossetti E, Rossi R, Fano EA (1994) Occurrence of larval Acanthocephalus anguillae (Acanthocephala) in the Asellus aquaticus (Crustacea, Isopoda) from the river Brenta. Boll Zool 61:77–81. doi:10.1080/11250009409355862

    Article  Google Scholar 

  • Douda K, Lopes-Lima M, Hinzmann M et al (2013) Biotic homogenization as a threat to native affiliate species: fish introductions dilute freshwater mussel’s host resources. Divers Distrib 19:933–942. doi:10.1111/ddi.12044

    Article  Google Scholar 

  • Dove ADM, Fletcher AS (2000) The distribution of the introduced tapeworm Bothriocephalus acheilognathi in Australian freshwater fishes. J Helminthol 74:121–127. doi:10.1017/S0022149X00000160

    CAS  PubMed  Google Scholar 

  • Dudgeon D, Arthington AH, Gessner MO et al (2006) Freshwater biodiversity: importance, threats, status and conservation challenges. Biol Rev 81:163. doi:10.1017/S1464793105006950

    Article  PubMed  Google Scholar 

  • Eldredge LG (2000) Non-indigenous freshwater fishes, amphibians, and crustaceans of the Pacific and Hawaiian islands. In: Sherley G (ed) Invasive species in the Pacific: a technical review and draft regional strategy. South Pacific Regional Environment Programme, Samoa, pp 173–190

  • Emde S, Rueckert S, Palm HW, Klimpel S (2012) Invasive Ponto-Caspian amphipods and fish increase the distribution range of the acanthocephalan Pomphorhynchus tereticollis in the River Rhine. PLoS One 7, e53218. doi:10.1371/journal.pone.0053218

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Emde S, Kochmann J, Kuhn T et al (2014a) Getting what is served? Feeding ecology influencing parasite-host interactions in invasive round goby Neogobius melanostomus. PLoS One 9, e109971. doi:10.1371/journal.pone.0109971

    Article  PubMed  PubMed Central  Google Scholar 

  • Emde S, Rueckert S, Kochmann J et al (2014b) Nematode eel parasite found inside acanthocephalan cysts—a “Trojan horse” strategy? Parasit Vectors 7:504

    PubMed  PubMed Central  Google Scholar 

  • Esmaeli HR, Teimori A, Owfi F et al (2014) Alien and invasive freshwater fish species in Iran: diversity, environmental impacts and management. Iran J Ichthyol 1:61–72

    Google Scholar 

  • Evans BB, Lester RJ (2001) Parasites of ornamental fish imported into Australia. Bull Eur Assoc Fish Pathol 21:51–55

    Google Scholar 

  • Font WF, Tate DC (1994) Helminth parasites of native Hawaiian freshwater fishes: an example of extreme ecological isolation. J Parasitol 80:682–688. doi:10.2307/3283246

    Article  CAS  PubMed  Google Scholar 

  • Fox MG, Vila-Gispert A, Copp GH (2007) Life-history traits of introduced Iberian pumpkinseed Lepomis gibbosus relative to native populations. Can differences explain colonization success? J Fish Biol 71:56–69. doi:10.1111/j.1095-8649.2007.01683.x

    Article  Google Scholar 

  • Froese R, Pauly D (2015) FishBase. In: World wide web electron. Publ. Wwwfishbaseorg. http://www.fishbase.org/. Accessed 13 Apr 2015

  • Gollasch S, Nehring S (2006) National checklist for aquatic alien species in Germany. Aquat Invasions 1:245–269. doi:10.3391/ai.2006.1.4.8

    Article  Google Scholar 

  • Golvan YJ (1969) Systématique des Acanthocéphales (Acanthocephala, Rudolphi 1801). Muséum, Parais

  • Heitlinger EG, Laetsch DR, Weclawski U et al (2009) Massive encapsulation of larval Anguillicoloides crassus in the intestinal wall of Japanese eels. Parasit Vectors 2:48. doi:10.1186/1756-3305-2-48

    Article  PubMed  PubMed Central  Google Scholar 

  • Herlyn H, Ehlers U (2001) Organisation of the praesoma in Acanthocephalus anguillae (Acanthocephala, Palaeacanthocephala) with special reference to the muscular system. Zoomorphology 121:13–18

    Article  Google Scholar 

  • Higgins RP, Thiel H (1988) Introduction to the study of meiofauna. Smithsonian Institution Press

  • Hill J, Cichra C (2005) Eradication of a reproducing population of convict cichlids, Cichlasoma nigrofasciatum (Cichlidae) in north-central Florida. Fla Sci 68:65–74

    Google Scholar 

  • Höfer S, Staas S (1998) Bericht zur fischereibiologischen Untersuchung des Gillbaches im Bereich Bergheim-Auenheim. Zoologisches Institut der Universität zu Köln, Abt. Allgemeine Ökologie und Limnologie, Köln

    Google Scholar 

  • Hoffmann GL, Schubert G (1984) Some parasite of exotic fishes. In: Courtenay WR Jr, Stauffer JR Jr (eds) Distribution, biology, and management of exotic fishes. The Johns Hopkins University Press, Baltimore, pp 233–261

    Google Scholar 

  • Holdich DM, Tolba MR (1981) The effect of temperature and water quality on the in vitro development and survival of Asellus aquaticus (Crustacea: Isopoda) eggs. Hydrobiologia 78:227–236

    Article  Google Scholar 

  • Holtfreter MC, Moné H, Müller-Stöver I et al (2014) Schistosoma haematobium infections acquired in Corsica, France, August 2013. Euro Surveill 19:20821

    Article  PubMed  Google Scholar 

  • Hussner A, Lösch R (2005) Alien aquatic plants in a thermally abnormal river and their assembly to neophyte-dominated macrophyte stands (River Erft, Northrhine-Westphalia). Limnol Ecol Manag Inland Waters 35:18–30. doi:10.1016/j.limno.2005.01.001

    Article  Google Scholar 

  • Hyslop EJ (1980) Stomach contents analysis—a review of methods and their application. J Fish Biol 17:411–429. doi:10.1111/j.1095-8649.1980.tb02775.x

    Article  Google Scholar 

  • Ishikawa T, Tachihara K (2008) Age, growth and maturation of the redbelly tilapia Tilapia zillii introduced into the Haebaru reservoir on Okinawa-Jima Island. Fish Sci 74:527–532. doi:10.1111/j.1444-2906.2008.01555.x

    Article  CAS  Google Scholar 

  • Ishikawa T, Tachihara K (2010) Life history of the nonnative convict cichlid Amatitlania nigrofasciata in the Haebaru reservoir on Okinawa-Jima Island, Japan. Environ Biol Fish 88:283–292. doi:10.1007/s10641-010-9641-x

    Article  Google Scholar 

  • Jeschke JM, Strayer DL (2005) Invasion success of vertebrates in Europe and North America. Proc Natl Acad Sci U S A 102:7198–7202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jourdan J, Miesen FW, Zimmer C et al (2014) On the natural history of an introduced population of guppies (Poecilia reticulata Peters, 1859) in Germany. BioInvasions Rec 3:175–184

    Article  Google Scholar 

  • Karvonen A, Kristjánsson BK, Skúlason S et al (2013) Water temperature, not fish morph, determines parasite infections of sympatric Icelandic threespine sticklebacks (Gasterosteus aculeatus). Ecol Evol 3:1507–1517. doi:10.1002/ece3.568

    Article  PubMed  PubMed Central  Google Scholar 

  • Kelly DW, Paterson RA, Townsend CR et al (2009) Parasite spillback: a neglected concept in invasion ecology? Ecology 90:2047–2056

    Article  CAS  PubMed  Google Scholar 

  • Kempkes M (2010) Die Guppys: Gesamtausgabe, Band 1 und 2. Wolf, VerlagsKG

  • Kirk RS (2003) The impact of Anguillicola crassus on European eels. Fish Manag Ecol 10:385–394. doi:10.1111/j.1365-2400.2003.00355.x

    Article  Google Scholar 

  • Klotz W, Miesen FW, Hüllen S et al (2013) Two Asian fresh water shrimp species found in a thermally polluted stream system in North Rhine-Westphalia, Germany. Aquat Invasions 8:333–339

    Article  Google Scholar 

  • Knopf K, Lucius R (2008) Vaccination of eels (Anguilla japonica and Anguilla anguilla) against Anguillicola crassus with irradiated L3. Parasitology 135:633–640. doi:10.1017/S0031182008004162

    Article  CAS  PubMed  Google Scholar 

  • Korhonen AI, Lagerspetz KYH (1996) Heat shock response and thermal acclimation in Asellus aquaticus. J Therm Biol 21:49–56. doi:10.1016/0306-4565(95)00020-8

    Article  CAS  Google Scholar 

  • Körting W (1975) Larval development of Bothriocephalus sp. (Cestoda: Pseudophyllidea) from carp (Cyprinus carpio L.) in Germany. J Fish Biol 7:727–733

    Article  Google Scholar 

  • Kupryanova RA (1954) On the biology of fish nematodes Camallanus lacustris (Zoega, 1776) and Camallanus truncatus (Rudolphi, 1814) (Nematoda: Spirurida). Dokl AN SSSR 97:373–376

    Google Scholar 

  • Kvach Y, Kornyychuk Y, Mierzejewska K, Rubtsova N, Yurakhno V, Grabowska J, Ovcharenko M (2014) Parasitization of invasive gobiids in the eastern part of the Central trans-European corridor of invasion of Ponto-Caspian hydrobionts. Parasitol Res 113:1605–1624. doi:10.1007/s00436-009-1384-2

    Article  PubMed  Google Scholar 

  • Lavery RJ, Keenleyside MHA (1990) Filial cannibalism in the biparental fish Cichlasoma nigrofasciatum (Pisces: Cichlidae) in response to early brood reductions. Ethology 86:326–338. doi:10.1111/j.1439-0310.1990.tb00440.x

    Article  Google Scholar 

  • Lefebvre F, Fazio G, Crivelli AJ (2012) Anguillicoloides crassus. In: Woo PTK, Buchmann K (eds) Fish parasites: pathobiology and protection. CABI, Wallingford, pp 310–326

    Chapter  Google Scholar 

  • Lever C (1996) Naturalized fishes of the world. Academic, California

    Google Scholar 

  • Levsen A, Berland B (2002) The development and morphogenesis of Camallanus cotti Fujita, 1927 (Nematoda: Camallanidae), with notes on its phylogeny and definitive host range. Syst Parasitol 53:29–37. doi:10.1023/A:1019955917509

    Article  PubMed  Google Scholar 

  • Macnab V, Barber I (2012) Some (worms) like it hot: fish parasites grow faster in warmer water, and alter host thermal preferences. Glob Chang Biol 18:1540–1548. doi:10.1111/j.1365-2486.2011.02595.x

    Article  Google Scholar 

  • Mcminn H (1990) Effects of the nematode parasite Camallanus cotti on sexual and non-sexual behaviors in the guppy (Poecilia reticulata). Am Zool 30:245–249. doi:10.1093/icb/30.2.245

    Article  Google Scholar 

  • Menezes RC, Tortelly R, Tortelly-Neto R et al (2006) Camallanus cotti Fujita, 1927 (Nematoda, Camallanoidea) in ornamental aquarium fishes: pathology and morphology. Mem Inst Oswaldo Cruz 101:683–687

    Article  PubMed  Google Scholar 

  • Moravec F (1998) Nematodes of freshwater fishes of the neotropical region. Academia Praha

  • Moravec F (2013) Parasitic nematodes of freshwater fishes of Europe. Academia

  • Murray JB, Wingard GL, Phillips EC (2010) Distribution of the non-native gastropod Melanoides tuberculatus in Biscayne National Park, Florida. US Geol Surv Open File Rep 2010:18

    Google Scholar 

  • Neumann W (1985) Schwimmblasenparasit Anguillicola bei Aalen. Fisch Teichwirt 11:322

    Google Scholar 

  • Noonan KC (1983) Female mate choice in the cichlid fish Cichlasoma nigrofasciatum. Anim Behav 31:1005–1010. doi:10.1016/S0003-3472(83)80005-0

    Article  Google Scholar 

  • Ondračková M, Dávidová M, Blažek R, Gelnar M, Jurajda P (2009) The interaction between an introduced fish host and local parasite fauna: Neogobius kessleri in the middle Danube River. Parasitol Res 105:201–208. doi:10.1007/s00436-009-1384-2

    Article  PubMed  Google Scholar 

  • Padilla DK, Williams SL (2004) Beyond ballast water: aquarium and ornamental trades as sources of invasive species in aquatic ecosystems. Front Ecol Environ 2:131–138

    Article  Google Scholar 

  • Palstra AP, Heppener DFM, van Ginneken VJT et al (2007) Swimming performance of silver eels is severely impaired by the swim-bladder parasite Anguillicola crassus. J Exp Mar Biol Ecol 352:244–256. doi:10.1016/j.jembe.2007.08.003

    Article  Google Scholar 

  • Paolucci EM, MacIsaac HJ, Ricciardi A (2013) Origin matters: alien consumers inflict greater damage on prey populations than do native consumers. Divers Distrib 19:988–995. doi:10.1111/ddi.12073

    Article  Google Scholar 

  • Paterson RA, Townsend CR, Poulin R, Tompkins DM (2011) Introduced brown trout alter native acanthocephalan infections in native fish: trout alter native host-parasite dynamics. J Anim Ecol 80:990–998. doi:10.1111/j.1365-2656.2011.01834.x

    Article  PubMed  Google Scholar 

  • Paull SH, LaFonte BE, Johnson PTJ (2012) Temperature-driven shifts in a host-parasite interaction drive nonlinear changes in disease risk. Glob Chang Biol 18:3558–3567. doi:10.1111/gcb.12018

    Article  Google Scholar 

  • Piazzini S, Lori E, Favilli L et al (2010) A tropical fish community in thermal waters of southern Tuscany. Biol Invasions 12:2959–2965. doi:10.1007/s10530-010-9695-x

    Article  Google Scholar 

  • Pinkas L, Oliphant MS, Iverson ILK (1971) Food habits study. Fish Bull 152:5–10

    Google Scholar 

  • Pool DW, Chubb JC (1985) A critical scanning electron microscope study of the scolex of Bothriocephalus acheilognathi Yamaguti, 1934, with a review of the taxonomic history of the genus Bothriocephalus parasitizing cyprinid fishes. Syst Parasitol 7:199–211

    Article  Google Scholar 

  • Prenter J, MacNeil C, Dick JT, Dunn AM (2004) Roles of parasites in animal invasions. Trends Ecol Evol 19:385–390. doi:10.1016/j.tree.2004.05.002

    Article  PubMed  Google Scholar 

  • Rabitsch W, Milasowszky N, Nehring S et al (2013) The times are changing: temporal shifts in patterns of fish invasions in central European fresh waters. J Fish Biol 82:17–33. doi:10.1111/j.1095-8649.2012.03457.x

    Article  CAS  PubMed  Google Scholar 

  • Roll U, Dayan T, Simberloff D, Goren M (2007) Characteristics of the introduced fish fauna of Israel. Biol Invasions 9:813–824. doi:10.1007/s10530-006-9083-8

    Article  Google Scholar 

  • Salgado-Maldonado G (2008) Helminth parasites of freshwater fish from Central America. Zootaxa 1915:29–53

    Google Scholar 

  • Salgado-Maldonado G (2013) Redescription of Neoechinorhynchus (Neoechinorhynchus) golvani Salgado-Maldonado, 1978 (Acanthocephala: Neoechinorhynchidae) and description of a new species from freshwater cichlids (Teleostei: Cichlidae) in Mexico. Parasitol Res 112:1891–1901. doi:10.1007/s00436-013-3374-7

    Article  PubMed  Google Scholar 

  • Salgado-Maldonado G, Pineda-López RF (2003) The Asian fish tapeworm Bothriocephalus acheilognathi: a potential threat to native freshwater fish species in Mexico. Biol Invasions 5:261–268

    Article  Google Scholar 

  • Salgado-Maldonado G, Rubio-Godoy M (2014) Helmintos parásitos de peces de agua dulce introducidos. In: Mendoza R, Koleff P (coords.) Especies acuáticas invasoras en México. Com Nac Para El Conoc Uso Biodivers México, pp 269–285

  • Sandlund OT, Daverdin RH, Choudhury A et al (2010) A survey of freshwater fishes and their macroparasites in the Guanacaste Conservation Area (ACG), Costa Rica

  • Storey AW, Edward DHD, Gazey P (1991) Surber and kick sampling: a comparison for the assessment of macroinvertebrate community structure in streams of south-western Australia. Hydrobiologia 211:111–121

    Article  Google Scholar 

  • Strayer DL (2012) Eight questions about invasions and ecosystem functioning. Ecol Lett 15:1199–1210. doi:10.1111/j.1461-0248.2012.01817.x

    Article  PubMed  Google Scholar 

  • Strayer DL, Dudgeon D (2010) Freshwater biodiversity conservation: recent progress and future challenges. J N Am Benthol Soc 29:344–358. doi:10.1899/08-171.1

    Article  Google Scholar 

  • Studer A, Thieltges D, Poulin R (2010) Parasites and global warming: net effects of temperature on an intertidal host–parasite system. Mar Ecol Prog Ser 415:11–22. doi:10.3354/meps08742

    Article  Google Scholar 

  • Stumpp M (1975) Untersuchungen zur Morphologie und Biologie von Camallanus cotti (Fujita, 1927). Parasitol Res 46:277–290. doi:10.1007/BF00418521

    Google Scholar 

  • Sures B, Knopf K (2004) Parasites as a threat to freshwater eels? Science 304:209–211. doi:10.1126/science.304.5668.209

    Article  CAS  PubMed  Google Scholar 

  • Tachihara K, Tokunaga K, Chimura Y (2002) Alien fishes in Okinawa Island. In: Ecological Society of Japan (ed) Handbook of alien species in Japan. Chijin-Shokan Tokyo Jpn, pp 248–249

  • Taraschewski H (1988) Host-parasite interface of fish acanthocephalans. I: Acanthocephalus anguillae (Palaeacanthocephala) in naturally infected fishes: LM and TEM investigations. Dis Aquat Organ 4:109–119

    Article  Google Scholar 

  • Trujillo-Jiménez P (1998) Trophic spectrum of the cichlids Cichlasoma (Parapetenia) istlanum and Cichlasoma (Arconcentrus) nigrofasciatum in the Amacuzac River, Morelos, Mexico. J Freshw Ecol 13:465–473. doi:10.1080/02705060.1998.9663643

    Article  Google Scholar 

  • van Ginneken V, Ballieux B, Willemze R et al (2005) Hematology patterns of migrating European eels and the role of EVEX virus. Comp Biochem Physiol Part C Toxicol Pharmacol 140:97–102. doi:10.1016/j.cca.2005.01.011

    Article  Google Scholar 

  • Vincent AG, Font WF (2003) Seasonal and yearly population dynamics of two exotic helminths, Camallanus cotti (Nematoda) and Bothriocephalus acheilognathi (Cestoda), parasitizing exotic fishes in Waianu Stream, O’ahu, Hawaii. J Parasitol 89:756–760. doi:10.1645/GE-90R

    Article  PubMed  Google Scholar 

  • Wielgoss S, Taraschewski H, Meyer A, Wirth T (2008) Population structure of the parasitic nematode Anguillicola crassus, an invader of declining North Atlantic eel stocks. Mol Ecol 17:3478–3495. doi:10.1111/j.1365-294X.2008.03855.x

    Article  CAS  PubMed  Google Scholar 

  • Williamson M, Fitter A (1996) The varying success of invaders. Ecology 77:1661–1666. doi:10.2307/2265769

    Article  Google Scholar 

  • Wu S, Wang G, Gao D et al (2007) Occurrence of Camallanus cotti in greatly diverse fish species from Danjiangkou Reservoir in central China. Parasitol Res 101:467–471. doi:10.1007/s00436-007-0472-4

    Article  PubMed  Google Scholar 

  • Würtz J, Taraschewski H, Pelster B (1996) Changes in gas composition in the swimbladder of the European eel (Anguilla anguilla) infected with Anguillicola crassus (Nematoda). Parasitology 112:233–238. doi:10.1017/S003118200008481X

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank U. Rose (Erftverband and Erftfischereigenossenschaft) for supporting this study and the permission to conduct surveys at the Gillbach, F. Wegmann (Untere Fischereibehörde Rhein-Erft-Kreis) for the electro-fishing permit, F. Herder (Zoologisches Forschungsmuseum Alexander Koenig) for supporting the study, S. Müller and F. Droppelmann (Zoologisches Forschungsmuseum Alexander Koenig), as well as J. Jourdan and J. Münster (Goethe-University, Senckenberg Gesellschaft für Naturforschung) and Eva Grimm (University of Würzburg) for support during fieldwork and with logistics.

Compliance with ethical standards

Permits and approvals (No. 39.74.20, Stream section Niederaußem - Gill) for electro-fishing were obtained from U. Rose (Erftverband and Erftfischereigenossenschaft) and F. Wegmann (Untere Fischereibehörde Rhein-Erft-Kreis) and included the sampling of fish for research purposes. All fish were immediately euthanized and stored on ice according to the German Animal Protection Law (§ 4) and the ordinance of slaughter and killing of animals (Tierschlachtverordnung § 13). No living or protected animals were used.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sebastian Emde.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Online Resource 1

Methodology and results of molecular analysis (DOC 65 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Emde, S., Kochmann, J., Kuhn, T. et al. Cooling water of power plant creates “hot spots” for tropical fishes and parasites. Parasitol Res 115, 85–98 (2016). https://doi.org/10.1007/s00436-015-4724-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4724-4

Keywords

Navigation