Skip to main content

Advertisement

Log in

Potential application of nanochitosan film as a therapeutic agent against cutaneous leishmaniasis caused by L. major

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Antileishmanial drugs traditionally used for treatment of cutaneous leishmaniasis are mainly toxic, ineffective for some parasite isolates, and costly. Since chitosan is reported to accelerate wound healing, the aims of this study were to assess the effectiveness of nanochitosan films in the treatment of cutaneous leishmaniasis caused by Leishmania major (Iranian strain) and to investigate alterations of antioxidant enzyme activities and malondialdehyde levels. Six weeks after L. major inoculation, when lesions appeared at the base of the tail of 36 female Balb/c mice, treatment was initiated. Lesion sizes, parasite proliferation, histopathological changes, antioxidant enzyme activities, and malondialdehyde changes were evaluated in groups treated with nanochitosan film and groups treated with the combination of nanochitosan film and daily peritoneal injection of glucantime. There was no significant difference between nanochitosan and glucantime in reduction of lesion size. But, lesion sizes in the group that was treated with a combination of nanochitosan film and glucantime were significantly reduced from 2 weeks after treatment. The results of the present study showed that application of nanochitosan film increased the wound contraction rate, reepithelialization rate, and scar tissue formation, and its combination with glucantime significantly reduced lesion size and parasite loads. Nanochitosan films alone or in combination with glucantime enhanced glutathione peroxidase (GPX) activity and decreased lipid peroxidation and oxidative stress. The results of this work support the potential usefulness of nanochitosan as a therapeutic agent against cutaneous leishmaniasis caused by L. major.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abdullah SM, Flath B, Presber W (1998) Mixed infection of human U-937 cells by two different species of Leishmania. Am J Trop Med Hyg 59:182–188

    CAS  PubMed  Google Scholar 

  • Akhtar F, Rizvi MM, Kar SK (2012) Oral delivery of curcumin bound to chitosan nanoparticles cured Plasmodium yoelii infected mice. Biotechnol Adv 30:310–320

    Article  CAS  PubMed  Google Scholar 

  • Allahverdiyev AM, Abamor ES, Bagirova M, Ustundag CB, Kaya C, Kaya F, Rafailovich M (2011) Antileishmanial effect of silver nanoparticles and their enhanced antiparasitic activity under ultraviolet light. Int J Nanomedicine 6:2705–2714

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Badawy ME, El R, Rogge TM, Stevens CV, Smagghe G, Steurbaut W, Hofte M (2004) Synthesis and fungicidal activity of new N, O-acyl chitosan derivatives. Biogeosciences 5:589–595

    CAS  Google Scholar 

  • Balakrishnan B, Mohanty M, Umashankar PR, Jayakrishnan A (2005) Evaluation of an in situ forming hydrogel wound dressing based on oxidized alginate and gelatin. Biomaterials 26:6335–6342

    Article  CAS  PubMed  Google Scholar 

  • Berman J (2003) Current treatment approaches to leishmaniasis. Curr Opin Infect Dis 16:397–401

    Article  CAS  PubMed  Google Scholar 

  • Bivas-Benita M, Laloup M, Versteyhe S, Dewit J, De Braekeleer J, Jongert E, Borchard G (2003) Generation of Toxoplasma gondii GRA1 protein and DNA vaccine loaded chitosan particles: preparation, characterization, and preliminary in vivo studies. Int J Pharm 6:17–27

    Article  Google Scholar 

  • Chung Y, Su Y, Chen C, Jia G, Wang H, Wu J, Lin J (2004) Relationship between antibacterial activity of chitosan and surface characteristics of cell wall. Acta Pharmacol Sinica 25:932–936

    CAS  Google Scholar 

  • Danesh-Bahreini MA, Shokri J, Samiei A, Kamali-Sarvestani E, Barzegar-Jalali M, Mohammadi-Samani S (2011) Nanovaccine for leishmaniasis: preparation of chitosan nanoparticles containing Leishmania superoxide dismutase and evaluation of its immunogenicity in BALB/c mice. Int J Nanomedicine 6:835–842

    PubMed Central  CAS  PubMed  Google Scholar 

  • Du WL, Niu SS, Xu YL, Xu ZR, Fan CL (2009) Antibacterial activity of chitosan tripolyphosphate nanoparticles loaded with various metal ions. Carb Polym 75:385–389

    Article  CAS  Google Scholar 

  • Föger F, Noonpakdee W, Loretz B, Joojuntr S, Salvenmoser W, Thaler M, Bernkop-Schnürch A (2006) Inhibition of malarial topoisomerase II in Plasmodium falciparum by antisense nanoparticles. Int J Pharm 319:139–146

    Article  PubMed  Google Scholar 

  • Guemouri L, Artur Y, Herbeth B (1991) Biological variability of superoxide dismutase, glutathione peroxidase, and catalase in blood. Clin Chem 37:1932–1937

    CAS  PubMed  Google Scholar 

  • Hadighi R, Mohebali M, Boucher P, Hajjaran H, Khamesipour A, Ouellette M (2006) Unresponsiveness to Glucantime treatment in Iranian cutaneous leishmaniasis due to drug-resistant Leishmania tropica parasites. PLoS Med 3:e162

    Article  PubMed Central  PubMed  Google Scholar 

  • Halliwell B, Chirico S (1993) Lipid peroxidation: its mechanism, measurement, and significance. Am J Clin Nutr 57:715–725

    Google Scholar 

  • Howling GI, Dettmar PW, Goddard PA, Hampson FC, Dornish M, Wood EJ (2001) The effect of chitin and chitosan on the proliferation of human skin fibroblasts and keratinocytes in vitro. Biomaterials 22:2959–2966

    Article  CAS  PubMed  Google Scholar 

  • Jafari M, Shirbazou S, Norozi M (2014) Induction of oxidative stress in skin and lung of infected BALB/C mice with Iranian strain of Leishmania major (MRHO/IR/75/ER). Iranian J Parasitol 9:60–69

    Google Scholar 

  • Kayser O (2001) A new approach for targeting to Cryptosporidium parvum using mucoadhesive nanosuspensions. Res Appl 214:83–85

    CAS  Google Scholar 

  • Koide SS (1998) Chitin-chitosan: properties, benefits and risks. Nutr Res 18:1091–1101

    Article  CAS  Google Scholar 

  • Kolodziejczyk L (1994) Study on glycogen content in the liver of mouse vs. pathomorphological changes in experimental fasciolosis. Acta Parasitol 39:211–216

    CAS  Google Scholar 

  • Kumar R, Mishra AK, Dubey NK, Tripathi YB (2007) Evaluation of Chenopodium ambrosioides oil as a potential source of antifungal activity, antiaflatoxigenic and antioxidant activity. Int J Food Microbiol 2:159–165

    Article  Google Scholar 

  • Leonardi D, Salomón CJ, Lamas MC, Olivieri AC (2009) Development of novel formulations for Chagas’ disease: optimization of benznidazole chitosan microparticles based on artificial neural networks. Int J Pharm 367:140–147

    Article  CAS  PubMed  Google Scholar 

  • Lin SB, Chen SH, Peng KC (2009) Preparation of antibacterial chito-oligosaccharide by altering the degree of deacetylation of B-chitosan in a Trichoderma harzianumchitinase-hydrolysing process. J Sci Food Agric 89:238–244

    Article  CAS  Google Scholar 

  • Marcato PD, Duran N (2008) New aspects of nanopharmaceutical delivery systems. J Nanosci Nanotechnol 8:2216–2229

    Article  CAS  PubMed  Google Scholar 

  • María GB, Leonardi D, Bolmaro RE, Claudia GE, Alejandro CO, Claudio JS, María CLI (2010) In vivo evaluation of albendazole microspheres for the treatment of Toxocara canis larva migrans. Eur J Pharm Biopharm 75:451–454

    Article  Google Scholar 

  • Mishra BB, Kale RR, Singh RK, Tiwari VK (2009) Alkaloids: future prospective to combat leishmaniasis. Fitoterapia 80:81–90

    Article  CAS  PubMed  Google Scholar 

  • Momeni AZ, Aminjavaheri M (2003) Successful treatment of non-healing cases of cutaneous leishmaniasis, using a combination of meglumine antimoniate plus allopurinol. Eur J Dermatol 13:40–43

    PubMed  Google Scholar 

  • Muller RH, Jacobs C, Kayser O (2001) Nanosuspensions as particulate drug formulations in therapy rationale for development and what we can expect for the future. Adv Drug Delivery Rev 47:3–19

    Article  CAS  Google Scholar 

  • Muzzarelli RA, Guerrieri M, Goteri G, Muzzarelli C, Anneni T, Ghiselli R, Cornelissen M (2005) The biocompatibility of dibutyryl chitin in the context of wound dressings. Biomaterials 26:5844–5854

    Article  CAS  PubMed  Google Scholar 

  • Oliveira CR, Rezende CMF, Silva MR, Olga M, Borges OM, Pêgo AP, Goes AM (2012) Oral vaccination based on DNA-chitosan nanoparticles against Schistosoma mansoni infection. Scientific World J 2012:1–11

    Google Scholar 

  • Paglia DE, Valentine WN (1967) Studies on the quantitative and qualitative characterization of erythrocyte glutathione peroxidase. J Lab Clin Med 70:158–169

    CAS  PubMed  Google Scholar 

  • Placer ZA, Cushman L, Johnson B (1966) Estimation of product of lipid peroxidation (malonyldialdehyde) in biochemical system. Anal Biochem 16:359–364

    Article  CAS  PubMed  Google Scholar 

  • Pujals G, Suñé-Negre JM, Pérez P, García E, Portus M, Tico JR, Miñarro M, Carrió J (2008) In vitro evaluation of the effectiveness and cytotoxicity of meglumine antimoniate microspheres produced by spray drying against Leishmania infantum. Parasitol Res 102:1243–1247

    Article  CAS  PubMed  Google Scholar 

  • Rhim JW, Hong SI, Park HM, Ng PKW (2006) Preparation and characterization of chitosan-based nanocomposite films with antimicrobial activity. J Agric Food Chem 54:5814–5822

    Article  CAS  PubMed  Google Scholar 

  • Romero FJ, Bosch-Morell F, Romero MJ, Jareno EJ, Romero B, Marin N, Roma J (1998) Lipid peroxidation products and antioxidants in human disease. Environ Health Perspect 106:1229–1234

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Senel S, McClure SJ (2004) Potential applications of chitosan in veterinary medicine. Adv Drug Deliv Rev 56:1467–1480

    Article  CAS  PubMed  Google Scholar 

  • Srivastava HC, Bhatt RM, Kant R, Yadav RS (2009a) Malaria associated with the construction of the Sardar Sarovar Project for water resources development, in Gujarat, India. Ann Trop Med Parasitol 103:653–658

    Article  CAS  PubMed  Google Scholar 

  • Srivastava SK, Naresh B, Hema P (2009b) Traditional insect bioprospecting as human food and medicine. Ind J Tradit Knowl 8:485–494

    Google Scholar 

  • Suzuki Y, Okamoto Y, Morimoto M, Sashiwa H, Saimoto H, Tanioka S, Shigemasa Y, Minami S (2000) Influence of physico-chemical properties of chitin and chitosan on complement activation. Carbohydr Polym 42:307–310

    Article  CAS  Google Scholar 

  • Ueno H, Nakamura F, Murakami M, Okumura M, Kadosawa T, Fujinaga T (2001) Evaluation effects of chitosan for the extracellular matrix production by fibroblasts and the growth factors production by macrophages. Biomaterials 22:2125–2130

    Article  CAS  PubMed  Google Scholar 

  • Umakant S, Sarman S (2009) Immunobiology of leishmaniasis. Indian J Exp Biol 47:412–423

    Google Scholar 

  • Upcroft P, Upcroft JA (2001) Drug targets and mechanisms of resistance in the anaerobic protozoa. Clin Microbiol Rev 14:150–164

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wang X, Du Y, Liu H (2004) Preparation, characterization and antimicrobial activity of chitosan-Zn complex. Carbohydr Polym 56:21–26

    Article  CAS  Google Scholar 

  • Wochna A, Niemczyk E, Kurono C, Masaoka M, Majczak A, Kezior J, Slomiǹska E, Lipiǹski M, Wakabayashi T (2005) Role of mitochondria in the switch mechanism of the cell death mode from apoptosis to necrosis—studies on {rho} 0 cells. J Electron Microsc 54:127–138

    Article  CAS  Google Scholar 

  • World Health Organization (1991) Basic laboratory methods in medical parasitology. Report of a WHO Expert Committee

  • Xie W, Xu P, Liu Q (2001) Antioxidant activity of water-soluble chitosan derivatives. Bioorg Med Chem Lett 11:1699–1701

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This study was supported by the research grant provided by Shahid Chamran University of Ahvaz.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somayeh Bahrami.

Electronic supplementary material

Below is the link to the electronic supplementary material.

ESM 1

(DOC 108 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bahrami, S., Esmaeilzadeh, S., Zarei, M. et al. Potential application of nanochitosan film as a therapeutic agent against cutaneous leishmaniasis caused by L. major . Parasitol Res 114, 4617–4624 (2015). https://doi.org/10.1007/s00436-015-4707-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4707-5

Keywords

Navigation