Skip to main content
Log in

The cuticle proteins: a putative role for deltamethrin resistance in Culex pipiens pallens

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Insecticide resistance has been a major public health challenge. It is impendent to study the mechanism on insecticide resistance. In our previous study, 14 differentially accumulated insect cuticle proteins (ICPs) based on insecticide resistance proteomes and transcriptomes were found in the deltamethrin-resistant (DR) and -susceptible (DS) strains of Culex pipiens pallens. To investigate if these ICPs are associated with deltamethrin resistance, different transcriptional levels of the 14 ICPs were detected in the DS and DR strains from laboratory and field populations by using quantitative real-time polymerase chain reaction (qRT-PCR). The expression levels of the 14 ICPs were also measured after short-term exposure of the DS strain to deltamethrin. The full-length complementary DNA (cDNA) of CpCPLCG5 gene, which encodes one of the 14 ICPs, was cloned from Cx. pipiens pallens. Homology analysis and phylogenetic analysis were carried out with some other insects. Furthermore, small interfering RNA (siRNA) was used to knockdown the expression level of CpCPLCG5 gene for characterizing its contribution to deltamethrin resistance. The results showed that the expression level of CpCPLCG5 gene was higher in DR strain than in DS strain both in laboratory and field populations while the other 13 ICPs were downregulated. The full-length cDNA of CpCPLCG5 gene was 732 bp, with the ORF of 390 bp and deduced 129 amino acids (GenBank/KF723314,2013). Knockdown of CpCPLCG5 gene increased the susceptibility of the DR strain while the expression level of the other 13 ICPs elevated. Our findings indicate that the cuticle proteins are associated with deltamethrin resistance in Cx. pipiens pallens.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmad M, McCaffery AR (1991) Elucidation of detoxication mechanisms involved in resistance to insecticides in the third instar larvae of a field-selected strain of Helicoverpa armigera with the use of synergists. Pestic Biochem Physiol 41(1):41–52

    Article  CAS  Google Scholar 

  • Ahmad M, Denholm I, Bromilow RH (2006) Delayed cuticular penetration and enhanced metabolism of deltamethrin in pyrethroid-resistant strains of Helicoverpa armigera from China and Pakistan. Pest Manag Sci 62(9):805–810

    Article  CAS  PubMed  Google Scholar 

  • Andersen SO (2000) Studies on proteins in post-ecdysial nymphal cuticle of locust, Locusta migratoria, and cockroach, Blaberus craniifer. Insect Biochem Mol Biol 30(7):569–577

    Article  CAS  PubMed  Google Scholar 

  • Awolola TS, Oduola OA, Strode C, Koekemoer LL, Brooke B, Ranson H (2009) Evidence of multiple pyrethroid resistance mechanisms in the malaria vector Anopheles gambiae sensu stricto from Nigeria. Trans R Soc Trop Med Hyg 103(11):1139–1145

    Article  CAS  PubMed  Google Scholar 

  • Benelli (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res 114(8):2801–2805

    Article  PubMed  Google Scholar 

  • Blandin S, Moita LF, Kocher T, Wilm M, Kafatos FC, Levashina EA (2002) Reverse genetics in the mosquito Anopheles gambiae: targeted disruption of the Defensin gene. EMBO Rep 3(9):852–856

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bonizzoni M, Afrane Y, Dunn WA, Atieli FK, Zhou G, Zhong D, Li J, Githeko A, Yan G (2012) Comparative transcriptome analyses of deltamethrin-resistant and -susceptible Anopheles gambiae mosquitoes from Kenya by RNA-Seq. PLoS ONE 7(9), e44607

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Bouhin H, Charles JP, Quennedey B, Courrent A, Delachambre J (1992) Characterization of a cDNA clone encoding a glycine-rich cuticular protein of Tenebrio molitor: developmental expression and effect of a juvenile hormone analogue. Insect Mol Biol 1(2):53–62

    Article  CAS  PubMed  Google Scholar 

  • Burton MJ, Mellor IR, Duce IR, Davies TG, Field LM, Williamson MS (2011) Differential resistance of insect sodium channels with kdr mutations to deltamethrin, permethrin and DDT. Insect Biochem Mol Biol 41(9):723–732

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Zhong D, Zhang D, Shi L, Zhou G, Gong M, Zhou H, Sun Y, Ma L, He J, Hong S, Zhou D, Xiong C, Chen C, Zou P, Zhu C, Yan G (2010) Molecular ecology of pyrethroid knockdown resistance in Culex pipiens pallens mosquitoes. PLoS ONE 5(7), e11681

    Article  PubMed Central  PubMed  Google Scholar 

  • Chu X, Lu W, Zhang Y, Guo X, Sun R, Xu B (2013) Cloning, expression patterns, and preliminary characterization of AccCPR24, a novel RR-1 type cuticle protein gene from Apis cerana cerana. Arch Insect Biochem Physiol 84(3):130–144

    Article  CAS  PubMed  Google Scholar 

  • Cornman RS, Willis JH (2009) Annotation and analysis of low-complexity protein families of Anopheles gambiae that are associated with cuticle. Insect Mol Biol 18(5):607–622

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Dittmer NT, Hiromasa Y, Tomich JM, Lu N, Beeman RW, Kramer KJ, Kanost MR (2012) Proteomic and transcriptomic analyses of rigid and membranous cuticles and epidermis from the elytra and hindwings of the red flour beetle, Tribolium castaneum. J Proteome Res 11(1):269–278

    Article  CAS  PubMed  Google Scholar 

  • Dong Y, Aguilar R, Xi Z, Warr E, Mongin E, Dimopoulos G (2006) Anopheles gambiae immune responses to human and rodent Plasmodium parasite species. PLoS Pathog 2(6), e52

    Article  PubMed Central  PubMed  Google Scholar 

  • Futahashi R, Okamoto S, Kawasaki H, Zhong YS, Iwanaga M, Mita K, Fujiwara H (2008) Genome-wide identification of cuticular protein genes in the silkworm, Bombyx mori. Insect Biochem Mol Biol 38(12):1138–1146

    Article  CAS  PubMed  Google Scholar 

  • Gong MQ, Gu Y, Hu XB, Sun Y, Ma L, Li XL, Sun LX, Sun J, Qian J, Zhu CL (2005) Cloning and overexpression of CYP6F1, a cytochrome P450 gene, from deltamethrin-resistant Culex pipiens pallens. Acta Biochim Biophys Sin (Shanghai) 37(5):317–326

    Article  CAS  Google Scholar 

  • He N, Botelho JM, McNall RJ, Belozerov V, Dunn WA, Mize T, Orlando R, Willis JH (2007) Proteomic analysis of cast cuticles from Anopheles gambiae by tandem mass spectrometry. Insect Biochem Mol Biol 37(2):135–146

    Article  CAS  PubMed  Google Scholar 

  • Hemingway J, Karunaratne SH (1998) Mosquito carboxylesterases: a review of the molecular biology and biochemistry of a major insecticide resistance mechanism. Med Vet Entomol 12(1):1–12

    Article  CAS  PubMed  Google Scholar 

  • Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391

    Article  CAS  PubMed  Google Scholar 

  • Jinfu W (1999) Resistance to deltamethrin in Culex pipiens pallens (Diptera: Culicidae) from Zhejiang, China. J Med Entomol 36(3):389–393

    Article  CAS  PubMed  Google Scholar 

  • Jones CM, Haji KA, Khatib BO, Bagi J, Mcha J, Devine GJ, Daley M, Kabula B, Ali AS, Majambere S, Ranson H (2013a) The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis. Parasit Vectors 6:343

    Article  PubMed Central  PubMed  Google Scholar 

  • Jones CM, Haji KA, Khatib BO, Bagi J, Mcha J, Devine GJ, Daley M, Kabula B, Ali AS, Majambere S, Ranson H (2013b) The dynamics of pyrethroid resistance in Anopheles arabiensis from Zanzibar and an assessment of the underlying genetic basis. Parasit Vectors 6(1):343

    Article  PubMed Central  PubMed  Google Scholar 

  • Karouzou MV, Spyropoulos Y, Iconomidou VA, Cornman RS, Hamodrakas SJ, Willis JH (2007) Drosophila cuticular proteins with the R&R Consensus: annotation and classification with a new tool for discriminating RR-1 and RR-2 sequences. Insect Biochem Mol Biol 37(8):754–760

    Article  CAS  PubMed  Google Scholar 

  • Kostaropoulos I, Papadopoulos AI, Metaxakis A, Boukouvala E, Papadopoulou-Mourkidou E (2001) Glutathione S-transferase in the defence against pyrethroids in insects. Insect Biochem Mol Biol 31(4-5):313–319

    Article  CAS  PubMed  Google Scholar 

  • Kucharski R, Maleszka J, Maleszka R (2007) Novel cuticular proteins revealed by the honey bee genome. Insect Biochem Mol Biol 37(2):128–134

    Article  CAS  PubMed  Google Scholar 

  • Lertkiatmongkol P, Pethuan S, Jirakanjanakit N, Rongnoparut P (2010) Transcription analysis of differentially expressed genes in insecticide-resistant Aedes aegypti mosquitoes after deltamethrin exposure. J Vector Ecol 35(1):197–203

    Article  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25(4):402–408

  • Mamidala P, Wijeratne AJ, Wijeratne S, Kornacker K, Sudhamalla B, Rivera-Vega LJ, Hoelmer A, Meulia T, Jones SC, Mittapalli O (2012) RNA-Seq and molecular docking reveal multi-level pesticide resistance in the bed bug. BMC Genomics 13:6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Matambo TS, Abdalla H, Brooke BD, Koekemoer LL, Mnzava A, Hunt RH, Coetzee M (2007) Insecticide resistance in the malarial mosquito Anopheles arabiensis and association with the kdr mutation. Med Vet Entomol 21(1):97–102

    Article  CAS  PubMed  Google Scholar 

  • Nauen R (2007) Insecticide resistance in disease vectors of public health importance. Pest Manag Sci 63(7):628–633

    Article  CAS  PubMed  Google Scholar 

  • Nkya TE, Akhouayri I, Kisinza W, David JP (2013) Impact of environment on mosquito response to pyrethroid insecticides: facts, evidences and prospects. Insect Biochem Mol Biol 43(4):407–416

    Article  CAS  PubMed  Google Scholar 

  • Nkya TE, Poupardin R, Laporte F, Akhouayri I, Mosha F, Magesa S, Kisinza W, David JP (2014) Impact of agriculture on the selection of insecticide resistance in the malaria vector Anopheles gambiae: a multigenerational study in controlled conditions. Parasit Vectors 7:480

    PubMed Central  PubMed  Google Scholar 

  • Paris M, Melodelima C, Coissac E, Tetreau G, Reynaud S, David JP, Despres L (2012) Transcription profiling of resistance to Bti toxins in the mosquito Aedes aegypti using next-generation sequencing. J Invertebr Pathol 109(2):201–208

    Article  CAS  PubMed  Google Scholar 

  • Pedra JH, McIntyre LM, Scharf ME, Pittendrigh BR (2004) Genome-wide transcription profile of field- and laboratory-selected dichlorodiphenyltrichloroethane (DDT)-resistant Drosophila. Proc Natl Acad Sci U S A 101(18):7034–7039

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiu J, Hardin PE (1995) Temporal and spatial expression of an adult cuticle protein gene from Drosophila suggests that its protein product may impart some specialized cuticle function. Dev Biol 167(2):416–425

    Article  CAS  PubMed  Google Scholar 

  • Reid WR, Zhang L, Liu F, Liu N (2012) The transcriptome profile of the mosquito Culex quinquefasciatus following permethrin selection. PLoS ONE 7(10), e47163

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Silva AX, Jander G, Samaniego H, Ramsey JS, Figueroa CC (2012) Insecticide resistance mechanisms in the green peach aphid Myzus persicae (Hemiptera: Aphididae) I: A transcriptomic survey. PLoS ONE 7(6), e36366

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sun L, Qian J, Zhou H, Li J, Shen B, Gao Q, Shen B, Zhu C (2007) Continuous, mixed, and alternating exposure to deltamethrin and fenthion affect development of resistance in Culex pipiens pallens in China. J Am Mosq Control Assoc 23(3):330–334

    Article  CAS  PubMed  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28(10):2731–2739

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tang L, Liang J, Zhan Z, Xiang Z, He N (2010) Identification of the chitin-binding proteins from the larval proteins of silkworm, Bombyx mori. Insect Biochem Mol Biol 40(3):228–234

    Article  CAS  PubMed  Google Scholar 

  • Togawa T, Augustine Dunn W, Emmons AC, Willis JH (2007) CPF and CPFL, two related gene families encoding cuticular proteins of Anopheles gambiae and other insects. Insect Biochem Mol Biol 37(7):675–688

    Article  CAS  PubMed  Google Scholar 

  • Usmani KA, Knowles CO (2001) DEF sensitive esterases in homogenates of larval and adult Helicoverpa zea, Spodoptera frugiperda, and Agrotis ipsilon (Lepidoptera: Noctuidae). J Econ Entomol 94(4):884–891

    Article  CAS  PubMed  Google Scholar 

  • Vannini L, Reed TW, Willis JH (2014) Temporal and spatial expression of cuticular proteins of Anopheles gambiae implicated in insecticide resistance or differentiation of M/S incipient species. Parasit Vectors 7:24

    Article  PubMed Central  PubMed  Google Scholar 

  • Vontas JG, Small GJ, Hemingway J (2000) Comparison of esterase gene amplification, gene expression and esterase activity in insecticide susceptible and resistant strains of the brown planthopper, Nilaparvata lugens (Stal). Insect Mol Biol 9(6):655–660

    Article  CAS  PubMed  Google Scholar 

  • Vontas J, Blass C, Koutsos AC, David JP, Kafatos FC, Louis C, Hemingway J, Christophides GK, Ranson H (2005) Gene expression in insecticide resistant and susceptible Anopheles gambiae strains constitutively or after insecticide exposure. Insect Mol Biol 14(5):509–521

    Article  CAS  PubMed  Google Scholar 

  • Vontas J, David JP, Nikou D, Hemingway J, Christophides GK, Louis C, Ranson H (2007) Transcriptional analysis of insecticide resistance in Anopheles stephensi using cross-species microarray hybridization. Insect Mol Biol 16(3):315–324

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Lv Y, Fang F, Hong S, Guo Q, Hu S, Zou F, Shi L, Lei Z, Ma K, Zhou D, Zhang D, Sun Y, Ma L, Shen B, Zhu C (2015) Identification of proteins associated with pyrethroid resistance by iTRAQ-based quantitative proteomic analysis in Culex pipiens pallens. Parasit Vectors 8:95

    Article  PubMed Central  PubMed  Google Scholar 

  • Willis JH (2010) Structural cuticular proteins from arthropods: annotation, nomenclature, and sequence characteristics in the genomics era. Insect Biochem Mol Biol 40(3):189–204

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wood O, Hanrahan S, Coetzee M, Koekemoer L, Brooke B (2010) Cuticle thickening associated with pyrethroid resistance in the major malaria vector Anopheles funestus. Parasit Vectors 3:67

    Article  PubMed Central  PubMed  Google Scholar 

  • Zhu F, Gujar H, Gordon JR, Haynes KF, Potter MF, Palli SR (2013) Bed bugs evolved unique adaptive strategy to resist pyrethroid insecticides. Sci Rep 3:1456

    PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by the National Institutes of Health of US (NIH) (Grant No. 2R01AI075746), the National Natural Science Foundation of China (Grant No. 30901244, 81171610, and 81301458), the National S & T Major Program (Grant No. 2012ZX10004-219 and 2012ZX10004-220) and Priority Academic Program Development of Jiangsu Higher Education Institutions.

We thank Maoqing Gong from Shandong Institute of Parasitic Diseases and Xuelian Chang from BengBu Medical College for their help with mosquito collection and Dr. Rongfeng Li and Qiang Liu for their expert technical assistance in gene injection.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Table S1

Summary of the 14 ICPs identified based on insecticide-resistance proteomes and transcriptomes in the deltamethrin-resistant (DS) and –susceptible (DR) strains of Cx. pipiens pallens. (DOC 42 kb)

Table S2

Sequences of primers used in this study. (DOC 46 kb)

Table S3

Relative expression ratios of the 14 ICPs in DS strain after exposure to a sublethal dosage of deltamethrin. (DOC 42 kb)

Table S4

Mortality of the gene-injected mosquitoes in WHO insecticide susceptibility bioassay. (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, F., Wang, W., Zhang, D. et al. The cuticle proteins: a putative role for deltamethrin resistance in Culex pipiens pallens . Parasitol Res 114, 4421–4429 (2015). https://doi.org/10.1007/s00436-015-4683-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4683-9

Keywords

Navigation