Skip to main content

Advertisement

Log in

Antileishmanial effect of mevastatin is due to interference with sterol metabolism

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Visceral leishmaniasis (VL) is one of the most severe forms of leishmaniasis which is fatal if left untreated. Sterol biosynthetic pathway in Leishmania is currently being explored for its therapeutic potential. In the present study, we have evaluated the antileishmanial efficacy of mevastatin, a known inhibitor of 3-hydroxy-3-methyl glutaryl-CoA reductase (HMGR) enzyme. Mevastatin inhibited Leishmania donovani promastigotes and intracellular amastigotes with an 50 % inhibitory concentration (IC50) value of 23.8 ± 4.2 and 7.5 ± 1.1 μM, respectively, without exhibiting toxicity towards host cell line. Mevastatin also inhibited recombinant L. donovani HMGR (LdHMGR) enzyme activity with an IC50 value of 42.2 ± 3.0 μM. Kinetic analysis revealed that the inhibition of recombinant LdHMGR activity by mevastatin was competitive with HMG-CoA. Mevastatin-treated parasites exhibited 66 % reduction in ergosterol levels with respect to untreated parasites. Incubation of mevastatin-treated L. donovani promastigotes with ergosterol resulted in revival of cell growth, whereas cholesterol supplementation failed to cause reversal in cell death. To further prove the specificity of mevastatin for HMGR enzyme, HMGR-overexpressing parasites were used which showed almost threefold resistance to mevastatin. It also induced morphological changes in the parasite accompanied by lipid body accumulation. Hence, antileishmanial effect of mevastatin was due to the inhibition of HMGR, which eventually leads to reduction in ergosterol levels and hence parasite death. The present study may have implications in the treatment of visceral form of leishmaniasis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  • Alvar J, Velez ID, Bern C, Herrero M, Desjeux P, Cano J, Jannin J, den Boer M, WHO Control Team (2012) Leishmaniasis worldwide and global estimates of its incidence. PLoS One 7(5):e35671

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Amet T, Nonaka M, Dewan MZ, Saitoh Y, Qi X, Ichinose S, Yamamoto N, Yamaoka S (2008) Statin-induced inhibition of HIV-1 release from latently infected U1 cells reveals a critical role for protein prenylation in HIV-1 replication. Microbes Infect 10(5):471–480

    Article  CAS  PubMed  Google Scholar 

  • Amin-Hanjani S, Stagliano NE, Yamada M, Huang PL, Liao JK, Moskowitz MA (2001) Mevastatin, an HMG-CoA reductase inhibitor, reduces stroke damage and upregulates endothelial nitric oxide synthase in mice. Stroke 32(4):980–986

    Article  CAS  PubMed  Google Scholar 

  • Bashmakov YK, Zigangirova NA, Pashko YP, Kapotina LN, Petyaev IM (2010) Chlamydia trachomatis growth inhibition and restoration of LDL-receptor level in HepG2 cells treated with mevastatin. Comp Hepatol 9(1):3

    Article  PubMed Central  PubMed  Google Scholar 

  • Britta EA, Scariot DB, Falzirolli H, Ueda-Nakamura T, Silva CC, Filho BP, Borsali R, Nakamura CV (2014) Cell death and ultrastructural alterations in Leishmania amazonensis caused by new compound 4-nitrobenzaldehyde thiosemicarbazone derived from S-limonene. BMC Microbiol 14(1):236

    Article  PubMed Central  PubMed  Google Scholar 

  • Catron DM, Lange Y, Borensztajn J, Sylvester MD, Jones BD, Haldar K (2004) Salmonella enterica serovar Typhimurium requires nonsterol precursors of the cholesterol biosynthetic pathway for intracellular proliferation. Infect Immun 72(2):1036–1042

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Coppens I, Bastin P, Levade T, Courtoy PJ (1995) Activity, pharmacological inhibition and biological regulation of 3-hydroxy-3-methylglutaryl coenzyme A reductase in Trypanosoma brucei. Mol Biochem Parasitol 69(1):29–40

    Article  CAS  PubMed  Google Scholar 

  • Cordle A, Koenigsknecht-Talboo J, Wilkinson B, Limpert A, Landreth G (2005) Mechanisms of statin-mediated inhibition of small G-protein function. J Biol Chem 280(40):34202–34209

    Article  CAS  PubMed  Google Scholar 

  • Corral MJ, Gonzalez-Sanchez E, Cuquerella M, Alunda JM (2014) In vitro synergistic effect of amphotericin B and allicin on Leishmania donovani and L. infantum. Antimicrob Agents Chemother 58(3):1596–1602

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Couto AS, Kimura EA, Peres VJ, Uhrig ML, Katzin AM (1999) Active isoprenoid pathway in the intra-erythrocytic stages of Plasmodium falciparum: presence of dolichols of 11 and 12 isoprene units. Biochem J 341(Pt 3):629–637

    CAS  PubMed Central  PubMed  Google Scholar 

  • Croft SL, Olliaro P (2011) Leishmaniasis chemotherapy—challenges and opportunities. Clin Microbiol Infect 17(10):1478–1483

    Article  CAS  PubMed  Google Scholar 

  • Danesh FR, Anel RL, Zeng L, Lomasney J, Sahai A, Kanwar YS (2003) Immunomodulatory effects of HMG-CoA reductase inhibitors. Arch Immunol Ther Exp 51(3):139–148

    CAS  Google Scholar 

  • de Macedo-Silva ST, de Oliveira Silva TL, Urbina JA, de Souza W, Rodrigues JC (2011) Antiproliferative, ultrastructural, and physiological effects of amiodarone on promastigote and amastigote forms of Leishmania amazonensis. Mol Biol Int 2011:876021

    Article  PubMed Central  PubMed  Google Scholar 

  • de Souza W, Rodrigues JCF (2009) Sterol biosynthesis pathway as target for anti-trypanosomatid drugs. Interdiscip Perspect Infect Dis 2009:1–19

    Google Scholar 

  • Delang L, Paeshuyse J, Vliegen I, Leyssen P, Obeid S, Durantel D, Zoulim F, Op de Beeck A, Neyts J (2009) Statins potentiate the in vitro anti-hepatitis C virus activity of selective hepatitis C virus inhibitors and delay or prevent resistance development. Hepatology 50(1):6–16

    Article  CAS  PubMed  Google Scholar 

  • Dinesh N, Kaur PK, Swamy KK, Singh S (2014a) Mianserin, an antidepressant kills Leishmania donovani by depleting ergosterol levels. Exp Parasitol 144:84–90

    Article  CAS  PubMed  Google Scholar 

  • Dinesh N, Pallerla DS, Kaur PK, Kishore Babu N, Singh S (2014b) Exploring Leishmania donovani 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) as a potential drug target by biochemical, biophysical and inhibition studies. Microb Pathog 66:14–23

    Article  CAS  PubMed  Google Scholar 

  • Endo A (1992) The discovery and development of HMG-CoA reductase inhibitors. J Lipid Res 33(11):1569–1582

    CAS  PubMed  Google Scholar 

  • Endo A, Kuroda M, Tanzawa K (1976) Competitive inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase by ML-236A and ML-236B fungal metabolites, having hypocholesterolemic activity. FEBS Lett 72(2):323–326

    Article  CAS  PubMed  Google Scholar 

  • Goldstein JL, Brown MS (1990) Regulation of the mevalonate pathway. Nature 343(6257):425–430

    Article  CAS  PubMed  Google Scholar 

  • Gonzale-Coloma A, Reina M, Saenz C, Lacret R, Ruiz-Mesia L, Aran VJ, Sanz J, Martinez-Diaz RA (2012) Antileishmanial, antitrypanosomal, and cytotoxic screening of ethnopharmacologically selected Peruvian plants. Parasitol Res 110(4):1381–1392

    Article  Google Scholar 

  • Harsha N, Rao SS, Sridevi V, Lakshmi MVVC, Kanthi T (2013) Optimization of physicochemical and nutritional parameters for the production of mevastatin using Pencillium citrinum MTCC 1256. IOSR J Pharm 3(1):40–45

    Article  Google Scholar 

  • Hurtado-Guerrrero R, Pena-Diaz J, Montalvetti A, Ruiz-Perez LM, Gonzalez-Pacanowska D (2002) Kinetic properties and inhibition of Trypanosoma cruzi 3-hydroxy-3-methylglutaryl CoA reductase. FEBS Lett 510(3):141–144

    Article  CAS  PubMed  Google Scholar 

  • Izquierdo D, Foyouzi N, Kwintkiewicz J, Duleba AJ (2004) Mevastatin inhibits ovarian theca-interstitial cell proliferation and steroidogenesis. Fertil Steril 3:1193–1197

    Article  Google Scholar 

  • Jain SK, Sahu R, Walker LA, Tekwani BL (2012) A parasite rescue and transformation assay for antileishmanial screening against intracellular Leishmania donovani amastigotes in THP1 human acute monocytic leukemia cell line. J Vis Exp 70:e4054

    Google Scholar 

  • Jimenez-Jimenez C, Carrero-Lerida J, Sealey-Cardona M, Ruiz Perez LM, Urbina JA, Gonzalez Pacanowska D (2008) Delta24(25)-sterol methenyltransferase: intracellular localization and azasterol sensitivity in Leishmania major promastigotes overexpressing the enzyme. Mol Biochem Parasitol 160(1):52–59

    Article  CAS  PubMed  Google Scholar 

  • Korlipara K (2002) Statin therapy: rationale for a new agent, rosuvastatin. Int J Clin Pract 56(5):379–387

    CAS  PubMed  Google Scholar 

  • Kulkarni MM, Reddy N, Gude T, McGwire BS (2013) Voricanozole suppresses the growth of Leishmania species in vitro. Parasitol Res 112(5):2095–2099

    Article  PubMed  Google Scholar 

  • Kwintkiewicz J, Foyouzi N, Piotrowski P, Rzepczynska I, Duleba AJ (2006) Mevastatin inhibits proliferation of rat ovarian theca-interstitial cells by blocking the mitogen-activated protein kinase pathway. Fertil Steril 86(4 Suppl):1053–1058

    Article  CAS  PubMed  Google Scholar 

  • Liao JK (2005) Clinical implications for statin pleiotropy. Curr Opin Lipidol 16(6):624–629

    Article  CAS  PubMed  Google Scholar 

  • Liu S, Rodriguez AV, Tosteson MT (2006) Role of simvastatin and methyl-β-cyclodextin on inhibition of poliovirus infection. Biochem Biophys Res Commun 347(1):51–59

    Article  CAS  PubMed  Google Scholar 

  • Mishra J, Madhubala R, Singh S (2013) Visceral and post-Kala-Azar dermal leishmaniasis isolates show significant difference in their in vitro drug susceptibility pattern. Parasitol Res 112(3):1001–1009

    Article  PubMed  Google Scholar 

  • Montalvetti A, Pena-Diaz J, Hurtado R, Ruiz-Perez LM, Gonzalez-Pacanowska D (2000) Characterization and regulation of Leishmania major 3-hydroxy-3-methylglutaryl-CoA reductase. Biochem J 349(Pt 1):27–34

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Mosmann T (1983) Rapid colorimetric assay for cellular growth and survival: application to proliferation and cytotoxicity assays. J Immunol Methods 65(1–2):55–63

    Article  CAS  PubMed  Google Scholar 

  • Murray HW, Berman JD, Davies CR, Saravia NG (2005) Advances in leishmaniasis. Lancet 366(9496):1561–1577

    Article  CAS  PubMed  Google Scholar 

  • Nakamura CE, Abeles RH (1985) Mode of interaction of beta-hydroxy-beta-methylglutaryl coenzyme A reductase with strong binding inhibitors: compactin and related compounds. Biochemistry 24(6):1364–1376

    Article  CAS  PubMed  Google Scholar 

  • Ng HE, Raj SS, Wong SH, Tey D, Tan HM (2008) Estimation of fungal growth using the ergosterol assay: a rapid tool in assessing the microbiological status of grains and feeds. Lett Appl Microbiol 46(1):113–118

    Article  CAS  PubMed  Google Scholar 

  • Potena L, Frascaroli G, Grigioni F, Lazzarotto T, Magnani G, Tomasi L, Coccolo F, Gabrielli L, Magelli C, Landini MP, Branzi A (2004) Hydroxymethyl-glutaryl coenzyme a reductase inhibition limits cytomegalovirus infection in human endothelial cells. Circulation 109(4):532–536

    Article  CAS  PubMed  Google Scholar 

  • Pradines B, Torrentino-Madamet M, Fontaine A, Henry M, Baret E, Mosnier J, Briolant S, Fusai T, Rogier C (2007) Atorvastatin is 10-fold more active in vitro than other statins against Plasmodium falciparum. Antimicrob Agents Chemother 51(7):2654–2655

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Roberts CW, McLeod R, Rice DW, Ginger M, Chance ML, Goad LJ (2003) Fatty acid and sterol metabolism: potential antimicrobial targets in apicomplexan and trypanosomatid parasitic protozoa. Mol Biochem Parasitol 126(2):129–142

    Article  CAS  PubMed  Google Scholar 

  • Rodrigues JC, Attias M, Rodriguez C, Urbina JA, Souza W (2002) Ultrastructural and biochemical alterations induced by 22,26-azasterol, a delta(24(25))-sterol methyltransferase inhibitor, on promastigote and amastigote forms of Leishmania amazonensis. Antimicrob Agents Chemother 46(2):487–499

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schmidt RA, Glomset JA, Wight TN, Habenicht AJ, Ross R (1982) A study of the influence of mevalonic acid and its metabolites on the morphology of Swiss 3T3 cells. J Cell Biol 95(1):144–153

    Article  CAS  PubMed  Google Scholar 

  • Shipman CM, Croucher PI, Russell RG, Helfrich MH, Rogers MJ (1998) The bisphosphonate incadronate (YM175) causes apoptosis of human myeloma cells in vitro by inhibiting the mevalonate pathway. Cancer Res 58(23):5294–5297

    CAS  PubMed  Google Scholar 

  • Singh S, Dinesh N, Kaur PK, Shamiulla B (2014) Ketanserin, an antidepressant, exerts its antileishmanial action via inhibition of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) enzyme of Leishmania donovani. Parasitol Res 113(6):2161–2168

    Article  PubMed  Google Scholar 

  • Smith PK, Krohn RI, Hermanson GT, Mallia AK, Gartner FH, Provenzano MD, Fujimoto EK, Goeke NM, Olson BJ, Klenk DC (1985) Measurement of protein using bicinchoninic acid. Anal Biochem 150(1):76–85

    Article  CAS  PubMed  Google Scholar 

  • Song JL, Lyons CN, Holleman S, Oliver BG, White TC (2003) Antifungal activity of fluconazole in combination with lovastatin and their effects on gene expression in the ergosterol and prenylation pathways in Candida albicans. Med Mycol 41(5):417–425

    Article  CAS  PubMed  Google Scholar 

  • Stancu C, Sima A (2001) Statins: mechanism of action and effects. J Cell Mol Med 5(4):378–387

    Article  CAS  PubMed  Google Scholar 

  • Taylor F, Huffman MD, Macedo AF, Moore TH, Burke M, Davey Smith G, Ward K, Ebrahim S (2013) Statins for the primary prevention of cardiovascular disease. Cochrane Database Syst Rev 1:CD004816

    PubMed  Google Scholar 

  • Teo KK, Burton JR (2002) Who should receive HMG CoA reductase inhibitors? Drugs 62(12):1707–1715

    Article  PubMed  Google Scholar 

  • Ukomadu C, Dutta A (2003) p21-dependent inhibition of colon cancer cell growth by mevastatin is independent of inhibition of G1 cyclin-dependent kinases. J Biol Chem 278(44):43586–43594

    Article  CAS  PubMed  Google Scholar 

  • Urbina JA, Lazardi K, Marchan E, Visbal G, Aguirre T, Piras MM, Piras R, Maldonado RA, Payares G, de Souza W (1993) Mevinolin (lovastatin) potentiates the antiproliferative effects of ketoconazole and terbinafine against Trypanosoma (Schizotrypanum) cruzi: in vitro and in vivo studies. Antimicrob Agents Chemother 37(3):580–591

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wong RPM, Davis TME (2009) Statins as potential antimalarial drugs: low relative potency and lack of synergy with conventional antimalarial drugs. Antimicrob Agents Chemother 53(5):2212–2214

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Yokoyama K, Trobridge P, Buckner FS, Scholten J, Stuart KD, Van Voorhis WC, Gelb MH (1998) The effects of protein farnesyltransferase inhibitors on trypanosomatids: inhibition of protein farnesylation and cell growth. Mol Biochem Parasitol 94(1):87–97

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. S. S Sharma, NIPER, S.A.S. Nagar for allowing us to use the fluorescence microscope and Mr. Rahul Mahajan, NIPER, S.A.S. Nagar for handling the scanning electron microscope. Special thanks to Mr. Neerupudi Kishore Babu for critically reading of the manuscript.

Author contributions

SS conceived and designed the experiments, contributed the reagents, and prepared the manuscript. ND and NS performed the experiments and prepared the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sushma Singh.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dinesh, N., Soumya, N. & Singh, S. Antileishmanial effect of mevastatin is due to interference with sterol metabolism. Parasitol Res 114, 3873–3883 (2015). https://doi.org/10.1007/s00436-015-4618-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4618-5

Keywords