Ecology of the interaction between Ixodes loricatus (Acari: Ixodidae) and Akodon azarae (Rodentia: Criceridae)

Abstract

The present study explores associations of different factors (i.e. host parameters, presence of other ectoparasites and [mainly biotic] environmental factors) with burdens of Ixodes loricatus immature stages in one of its main hosts in Argentina, the rodent Akodon azarae. For 2 years, rodents were trapped and sampled monthly at 16 points located in four different sites in the Parana River Delta region. Data were analysed with generalized linear mixed models with a negative binomial response (counts of larvae or nymphs). The independent variables assessed were (a) environmental: trapping year, presence of cattle, type of vegetation, rodent abundance; (b) host parameters: body length, sex, body condition, blood cell counts, natural antibody titers and (c) co-infestation with other ectoparasites. Two-way interaction terms deemed a priori as relevant were also included in the analysis. Most of the associations investigated were found significant, but in general, the direction and magnitude of the associations were context-dependent. An exception was the presence of cattle, which was consistently negatively associated with both larvae and nymphs independently of all other variables considered and had the strongest effect on tick burdens. Mites, fleas and Amblyomma triste were also significantly associated (mostly positively) with larval and nymph burdens, and in many cases, they influenced associations with environmental or host factors. Our findings strongly support that raising cattle may have a substantial impact on the dynamics of I. loricatus and that interactions within the ectoparasite community may be an important—but generally ignored—driver of tick dynamics.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Akaike H (1974) A new look at the statistical model identification. IEEE Trans Autom Control AC-19:716–723

    Article  Google Scholar 

  2. Anderson K, Ezenwa VO, Jolles AE (2013) Tick infestation patterns in free ranging African buffalo (Syncercus caffer): effects of host innate immunity and niche segregation among tick species. Int J Parasitol 2:1–9

    Google Scholar 

  3. Arneberg P, Skorping A, Read AF (1998) Parasite abundance, body size, life histories, and the energetic equivalence rule. Am Nat 151:497–513

    CAS  Article  PubMed  Google Scholar 

  4. Bandilla M, Hakalahti-Siren T, Valtonen ET (2008) Patterns of host switching in the fish ectoparasite Argulus coregoni. Behav Ecol Sociobiol 62:975–982

    Article  Google Scholar 

  5. Barros-Battesti DM, Yoshinari NH, Bonoldi VLN, de Castro Gomes A (2000) Parasitism by Ixodes didelphidis and I. loricatus (Acari: Ixodidae) on small wild mammals from an Atlantic Forest in the State of São Paulo, Brazil. J Med Entomol 37:820–827

    CAS  Article  PubMed  Google Scholar 

  6. Behnke JM, Bajer A, Sinski E, Wakelin D (2001) Interactions involving intestinal nematodes of rodents: experimental and field studies. Parasitology 122(Suppl):S39–S49

    Article  PubMed  Google Scholar 

  7. Beldomenico PM, Begon M (2010) Disease spread, susceptibility and infection intensity: vicious circles? Trends Ecol Evol 25:21–27

    Article  PubMed  Google Scholar 

  8. Beldomenico PM, Baldi CJ, Orcellet VM, Peralta JL, Venzal JM, Mangold AJ, Guglielmone AA (2004) Ecological aspects of Ixodes pararicinus Keirans & Clifford, 1985 (Acari: Ixodidae) and other tick species parasitizing sigmodontin mice (Rodentia: Muridae) in the northwestern Argentina. Acarol 44:15–21

    Google Scholar 

  9. Beldomenico PM, Lareschi M, Nava S, Mangold AJ, Guglielmone AA (2005) The parasitism of immature stages of Ixodes loricatus (Acari: Ixodidae) on wild rodents in Argentina. Exp App Acarol 36:139–148

    Article  Google Scholar 

  10. Beldomenico PM, Telfer S, Gebert S, Lukomski L, Bennett M, Begon M (2008) The dynamics of health in wild field vole populations: a haematological perspective. J Anim Ecol 77:984–997

    Article  PubMed Central  PubMed  Google Scholar 

  11. Bowen CJ, Jaworski DC, Wasala NB, Coons LB (2010) Macrophage migration inhibitory factor expression and protein localization in Amblyomma americanum (Ixodidae). Exp App Acarol 50:343–352

    CAS  Article  Google Scholar 

  12. Boyard C, Vourc’h G, Barnouin J (2008) The relationships between Ixodes ricinus and small mammal species at the woodland–pasture interface. Exp App Acarol 44:61–76

    Article  Google Scholar 

  13. Brunner JL, Ostfeld RS (2008) Multiple causes of variable tick burdens on small-mammal hosts. Ecology 89:2259–2272

    Article  PubMed  Google Scholar 

  14. Cabrera AL (1994) Enciclopedia Argentina de agricultura y jardinería, Tomo II, Fascículo 1: Regiones fitogeográficas Argentinas. ACME, Buenos Aires

    Google Scholar 

  15. Cardon M, Loot G, Grenouillet G, Blanchet S (2011) Host characteristics and environmental factors differentially drive the burden and pathogenicity of an ectoparasite: a multilevel causal analysis. J Anim Ecol 80:657–667

    Article  PubMed  Google Scholar 

  16. Colombo VC, Lareschi M, Monje LD, Nava S, Antoniazzi LR, Beldomenico PM, Guglielmone AA (2013) Garrapatas (Ixodida) y ácaros (Mesostigmata) parásitos de roedores sigmodontinos del delta del Paraná, Argentina. Revista FAVE—Ciencias Veterinarias 12:39-50

  17. Colombo VC, Guglielmone AA, Monje LD, Nava S, Beldomenico PM (2014) Seasonality of immature stages of Ixodes loricatus (Acari: Ixodidae) in the Paraná Delta, Argentina. Ticks Tick Borne Dis 5:701–705

    Article  PubMed  Google Scholar 

  18. Cox FE (2001) Concomitant infections, parasite s and immune responses. Parasitology 122:S23–S38

    Article  PubMed  Google Scholar 

  19. Debárbora VN, Mangold AJ, Eberhardt A, Guglielmone AA, Nava S (2014) Natural infestation of Hydrochoerus hydrochaeris by Amblyomma dubitatum ticks. Exp App Acarol 63:285–294

    Article  Google Scholar 

  20. Déruaz M, Frauenschuh A, Alessandri AL, Dias JM, Coelho FM, Russo RC, Proudfoot AE (2008) Ticks produce highly selective chemokine binding proteins with antiinflammatory activity. J Exp Med 205:2019–2031

    Article  PubMed Central  PubMed  Google Scholar 

  21. Estrada-Peña A, Venzal JM, Mangold AJ, Cafrune MM, Guglielmone AA (2005) The Amblyomma maculatum Koch, 1844 (Acari: Ixodidae: Amblyomminae) tick group: diagnostic characters, description of the larva of A parvitarsum Neumann, 1901, 16S rDNA sequences, distribution and hosts. Syst Parasitol 60:99–112

    Article  PubMed  Google Scholar 

  22. Ezenwa VO, Jolles AE (2011) From host immunity to pathogen invasion: the effects of helminth coinfestation on the dynamics of microparasites. Integr Comp Biol 51:540–551

    Article  PubMed  Google Scholar 

  23. Green A (2001) Mass/length residuals: measures of body condition or generators of spurious results. Ecology 82:1473–1483

    Article  Google Scholar 

  24. Guglielmone AA, Beati L, Barros-Battesti DM, Labruna MB, Nava S, Venzal JM, Mangold AJ, Szabo MP, Martins JR, Gonzalez-Acuna D, Estrada-Peña A (2006) Ticks (Ixodidae) on humans in South America. Exp Appl Acarol 40:83–100

    CAS  Article  PubMed  Google Scholar 

  25. Guglielmone AA, Nava S, Díaz MM (2011) Relationships of South American marsupials (Didelphimorphia, Microbiotheria and Paucituberculata) and hard ticks (Acari: Ixodidae) with distribution of four species of Ixodes. Zootaxa 3086:1–30

    Google Scholar 

  26. Harrison A, Scantlebury M, Montgomery WI (2010) Body mass and sex‐biased parasitism in wood mice Apodemus sylvaticus. Oikos 119:1099–1104

    Article  Google Scholar 

  27. Hawlena H, Abramsky Z, Krasnov BR (2006) Ectoparasites and age-dependent survival in a desert rodent. Oecologia 148:30–39

    Article  PubMed  Google Scholar 

  28. Hayward AD, Wilson AJ, Pilkington JG, Pemberton JM, Kruuk LEB (2009) Ageing in a variable habitat: environmental stress affects senescence in parasite resistance in St Kilda Soay sheep. Proc Roy Soc B-Biol Sci 276:3477–3485

    Article  Google Scholar 

  29. Hudson P, Rizzoli A, Grenfell B, Heesterbeek H, Dobson A (2002) The ecology of wildlife diseases. Oxford University Press, Oxford

    Google Scholar 

  30. Hughes VL, Randolph SE (2001) Testosterone depresses innate and acquired resistance to ticks in natural rodent hosts: a force for aggregated distributions of parasites. J Parasitol 87:49–54

    CAS  Article  PubMed  Google Scholar 

  31. Jolles AE, Ezenwa VO, Etienne RS, Turner WC, Olff H (2008) Interactions between macroparasites and microparasites drive infestation patterns in free-ranging African buffalo. Ecology 89:2239–2250

    Article  PubMed  Google Scholar 

  32. Kandus P, Malvárez AI (2004) Vegetation patterns and change analysis in the lower delta islands of the Paraná River (Argentina). Wetlands 24:620–632

    Article  Google Scholar 

  33. Kandus P, Malvárez A, Madanes N (2003) Estudio de las comunidades de plantas herbáceas de las islas bonaerenses del Bajo Delta del Río Paraná (Argentina). Darwiniana 41:1–16

    Google Scholar 

  34. Kiffner C, Vor T, Hagedorn P, Niedrig M, Rühe F (2011) Factors affecting patterns of tick parasitism on forest rodents in tick-borne encephalitis risk areas, Germany. Parasitol Res 108:323–335

    Article  PubMed Central  PubMed  Google Scholar 

  35. Kramer CD, Poole NM, Coons LB, Cole JA (2011) Tick saliva regulates migration, phagocytosis, and gene expression in the macrophage-like cell line, IC-21. Exp Parasitol 127:665–671

    CAS  Article  PubMed  Google Scholar 

  36. Krasnov B, Khokhlova I, Shenbrot G (2002) The effect of host density on ectoparasite distribution: an example of a rodent parasitized by fleas. Ecology 83:164–175

    Article  Google Scholar 

  37. Krasnov BR, Morand S, Hawlena H, Khokhlova IS, Shenbrot GI (2005) Sex-biased parasitism, seasonality and sexual size dimorphism in desert rodents. Oecologia 146:209–217

    Article  PubMed  Google Scholar 

  38. Krasnov BR, Bordes F, Khokhlova IS, Morand S (2012) Gender-biased parasitism in small mammals: patterns, mechanisms, consequences. Mammalia 76:1–13

    Article  Google Scholar 

  39. Lareschi M (2000) Estudio de la fauna ectoparasita (Acari, Phthiraptera y Siphonaptera) de roedores sigmodontinos (Rodentia: Muridae) de Punta Lara, Provincia de Buenos Aires. PhD thesis, FCNyM, UNLP, La Plata, Argentina, 174 pp.

  40. Lareschi M (2010) Ectoparasite occurrence associated with males and females of wild rodents Oligoryzomys flavescens (Waterhouse) and Akodon azarae (Fischer) (Rodentia: Cricetidae: Sigmodontinae) in the Punta Lara Wetlands, Argentina. Neotrop Entomol 39:818–822

    Article  PubMed  Google Scholar 

  41. Lareschi M, Notarnicola J, Navone G, Linardi PM (2003) Arthropod and filarioid parasites associated with wild rodents in the northeast marshes of Buenos Aires, Argentina. Mem Inst Oswaldo Cruz 98:673–677

    Article  PubMed  Google Scholar 

  42. Lello J, Boag B, Fenton A, Stevenson IR, Hudson PJ (2004) Competition and mutualism among the gut helminths of a mammalian host. Nature 428:840–844

    CAS  Article  PubMed  Google Scholar 

  43. Lutermann H, Fagir DM, Bennett NC (2015) Complex interactions within the ectoparasite community of the eastern rock sengi (Elephantulus myurus). Int J Parasitol 4:148–158

    Google Scholar 

  44. Marques S, Barros-Battesti DM, Onofrio VC, Famadas KM, Faccini JL, Keirans JE (2004) Redescription of larva, nymph and adults of Ixodes loricatus Neumann, 1899 (Acari: Ixodidae) based on light and scanning electron microscopy. Syst Parasitol 59:135–146

    Article  PubMed  Google Scholar 

  45. Nava S, Lareschi M, Voglino D (2003) Interrelationship between ectoparasites and wild rodents from northeastern Buenos Aires Province, Argentina. Mem Inst Oswaldo Cruz 98:45–49

    Article  PubMed  Google Scholar 

  46. Nava S, Lareschi M, Beldoménico PM, Zerpa C, Venzal JM, Mangold AJ, Guglielmone AA (2004) Sigmodontinae rodents as hosts for larvae and nymphs of Ixodes loricatus Neumann, 1899 (Acari:Ixodidae). Parasite 11:411–414

    CAS  Article  PubMed  Google Scholar 

  47. Nava S, Elshenawy Y, Eremeeva ME, Sumner JW, Mastropaolo M, Paddock CD (2008) Rickettsia parkeri in Argentina. Emerg Infect Dis 14:1894–1897

    Article  PubMed Central  PubMed  Google Scholar 

  48. Nava S, Mangold AJ, Mastropaolo M, Venzal JM, Fracassi N, Guglielmone AA (2011) Seasonal dynamics and hosts of Amblyomma triste (Acari: Ixodidae) in Argentina. Vet Parasitol 181:301–308

    Article  PubMed  Google Scholar 

  49. Navone GT, Notarnicola J, Nava S, Robles MR, Galliari C, Lareschi M (2009) Arthropods and helminths assemblage in sigmodontine rodents from wetlands of the Rio de la Plata, Argentina. Mastozool Neotrop 16:121–133

    Google Scholar 

  50. Ostfeld RS, Miller MC, Hazler KR (1996) Causes and consequences of tick (Ixodes scapularis) burdens on white-footed mice (Peromyscus leucopus). J Mammal 77:266–273

    Article  Google Scholar 

  51. Owen JP, Nelson AC, Clayton DH (2010) Ecological immunology of bird-ectoparasite systems. Trends Parasitol 26:530–539

    Article  PubMed  Google Scholar 

  52. Pacheco RC, Venzal JM, Richtzenhain LJ, Labruna MB (2006) Rickettsia parkeri in Uruguay. Emerg Infect Dis 12:1804–1805

    Article  PubMed Central  PubMed  Google Scholar 

  53. Pathak A, Pelensky C, Boag B, Cattadori I (2012) Immuno-epidemiology of chronic bacterial and helminth co-infestations: observations from the field and evidence from the laboratory. Int J Parasitol 42:647–655

    Article  PubMed  Google Scholar 

  54. Pedersen AB, Fenton A (2007) Emphasizing the ecology in parasite community ecology. Trends Ecol Evol 22:133–139

    Article  PubMed  Google Scholar 

  55. Perkins SE, Cattadori IM, Tagliapietra V, Rizzoli AP, Hudson PJ (2003) Empirical evidence for key hosts in persistence of a tick-borne disease. Int J Parasitol 33:909

    Article  PubMed  Google Scholar 

  56. Petney TN, Andrews RH (1998) Multiparasite communities in animals and humans: frequency, structure and pathogenic significance. Int J Parasitol 28:377–393

    CAS  Article  PubMed  Google Scholar 

  57. Pollock NB, Vredevoe LK, Taylor EN (2012) The effect of exogenous testosterone on ectoparasite loads in free‐ranging western fence lizards. J Exp Zool 317:447–454

    CAS  Article  Google Scholar 

  58. Racca AL, Eberhardt AT, Moreno PG, Baldi C, Beldomenico PM (2014) Differences in natural antibody titers comparing free-ranging guanacos (Lama guanicoe) and capybaras (Hydrochoerus hydrochaeris). Vet J 199:308–309

    CAS  Article  PubMed  Google Scholar 

  59. Richards S (2008) Dealing with overdispersed count data in applied ecology. J Appl Ecol 45:218–227

    Article  Google Scholar 

  60. Roulin A, Christe P, Dijkstra C, Ducrest AL, Jungi TW (2007) Origin-related, environmental, sex, and age determinants of immunocompetence, susceptibility to ectoparasites, and disease symptoms in the barn owl. Biol J Linn Soc 90:703–718

    Article  Google Scholar 

  61. Schmidt KA, Ostfeld RS, Schauber EM (1999) Infestation of Peromyscus leucopus and Tamias striatus by Ixodes scapularis (Acari: Ixodidae) in relation to the abundance of hosts and parasites. J Med Entomol 36:749–757

    CAS  Article  PubMed  Google Scholar 

  62. Shaw DJ, Grenfell BT, Dobson AP (1998) Patterns of macroparasite aggregation in wildlife host populations. Parasitology 117:597–610

    Article  PubMed  Google Scholar 

  63. Silveira I, Pacheco RC, Szabó MPJ, Ramos HGC, Labruna MB (2007) Rickettsia parkeri in Brazil. Emerg Infect Dis 13:1111–1113

    Article  PubMed Central  PubMed  Google Scholar 

  64. Soliman S, Marzouk AS, Main AJ, Montasser AA (2001) Effect of sex, size, and age of commensal rat hosts on the infestation parameters of their ectoparasites in a rural area of Egypt. J Parasitol 87:1308–1316

    CAS  Article  PubMed  Google Scholar 

  65. Sorci G, de Fraipont M, Clobert J (1997) Host density and ectoparasite avoidance in the common lizard (Lacerta vivipara). Oecologia 111:183–188

    Article  Google Scholar 

  66. Stanko M, Miklisová D, de Bellocq JG, Morand S (2002) Mammal density and patterns of ectoparasite species richness and abundance. Oecologia 131:289–295

    Article  Google Scholar 

  67. Szabó MPJ, Labruna MB, Pereira MC, Duarte JMB (2003) Ticks (Acari: Ixodidae) on wild marsh-deer (Blastocerus dichotomus) from southeast Brazil: infestations before and after habitat loss. J Med Entomol 40:268–274

    Article  PubMed  Google Scholar 

  68. Telfer S, Lambin X, Birtles R, Beldomenico P, Burthe S, Paterson S, Begon M (2010) Species interactions in a parasite network drive infection risk in a wildlife population. Science 330:243–246

    CAS  Article  PubMed Central  PubMed  Google Scholar 

  69. Ulrich Y, Schmid-Hempel P (2012) Host modulation of parasite competition in multiple infections. Proc Roy Soc B-Biol Sci 279:2982–2989

    Article  Google Scholar 

  70. Vaclav R, Calero-Torralbo MA, Valera F (2008) Ectoparasite load is linked to ontogeny and cell-mediated immunity in an avian host system with pronounced hatching asynchrony. Biol J Linnean Soc 94:463–473

    Article  Google Scholar 

  71. Venzal JM, Portillo A, Estrada-Pena A, Castro O, Cabrera PA, Oteo JA (2004) Rickettsia parkeri in Amblyomma triste from Uruguay. Emerg Infect Dis 10:1493–1495

    Article  PubMed Central  PubMed  Google Scholar 

  72. Venzal JM, Estrada-Pena A, Castro O, De Souza CG, Felix ML, Nava S, Guglielmone AA (2008) Amblyomma triste Koch, 1844 (Acari: Ixodidae): hosts and seasonality of the vector of Rickettsia parkeri in Uruguay. Vet Parasitol 155:104–109

    CAS  Article  PubMed  Google Scholar 

  73. Vicente J, Perez-Rodriguez L, Gortazar C (2007) Sex, age, spleen size, and kidney fat of redder relative to infection intensities of the lungworm Elaphostrongylus cervi. Naturwissenschaften 94:581–587

    CAS  Article  PubMed  Google Scholar 

  74. Zhonglai L, Yaoxing Z (1997) Analysis on the yearly dynamics relation between body flea index and population of Citellus dauricus. Acta Entomol Sinica 40:166–170

    Google Scholar 

  75. Zoffoli ML, Kandus P, Madanes N, Calvo DH (2008) Seasonal and interannual analysis of wetlands in South America using NOAA-AVHRR NDVI time series: the case of the Parana Delta Region Landscape. Ecol 23:833–848

    Google Scholar 

Download references

Acknowledgments

Valeria C. Colombo is a fellow of the Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET). This work was funded by Agencia Nacional de Promoción Científica y Tecnológica (PICT 2008-00090) and by Universidad Nacional del Litoral (CAI + D 2011). Special thanks to Instituto Nacional de Tecnología Agropecuaria (INTA) Delta, INTA Rafaela, Facultad de Ciencias Veterinarias—UNL, Ulyses F.J. Pardiñas, Natalia Fracassi, Gerardo Mujica, Cristian Ortiz and Adrian Perri.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pablo M. Beldomenico.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Colombo, V.C., Nava, S., Antoniazzi, L.R. et al. Ecology of the interaction between Ixodes loricatus (Acari: Ixodidae) and Akodon azarae (Rodentia: Criceridae). Parasitol Res 114, 3683–3691 (2015). https://doi.org/10.1007/s00436-015-4596-7

Download citation

Keywords

  • Parasite-host relationships
  • Disease ecology
  • Ixodidae
  • Rodents
  • Tick-borne diseases