Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum

Abstract

Each year, mosquito-borne diseases infect nearly 700 million people, resulting to more than 1 million deaths. In this study, we evaluated the larvicidal, pupicidal, and smoke toxicity of Senna occidentalis and Ocimum basilicum leaf extracts against the malaria vector Anopheles stephensi. Furthermore, the antiplasmodial activity of plant extracts was evaluated against chloroquine (CQ)-resistant (CQ-r) and CQ-sensitive (CQ-s) strains of Plasmodium falciparum. In larvicidal and pupicidal experiments, S. occidentalis LC50 ranged from 31.05 (I instar larvae) to 75.15 ppm (pupae), and O. basilicum LC50 ranged from 29.69 (I instar larvae) to 69 ppm (pupae). Smoke toxicity experiments conducted against adults showed that S. occidentalis and O. basilicum coils evoked mortality rates comparable to the pyrethrin-based positive control (38, 52, and 42 %, respectively). In antiplasmodial assays, Senna occidentalis 50 % inhibitory concentration (IC50) were 48.80 μg/ml (CQ-s) and 54.28 μg/ml (CQ-r), while O. basilicum IC50 were 68.14 μg/ml (CQ-s) and 67.27 μg/ml (CQ-r). Overall, these botanicals could be considered as potential sources of metabolites to build newer and safer malaria control tools.

This is a preview of subscription content, access via your institution.

Fig. 1

References

  1. Ahmet A, Medine G, Meryem Þ, Hatice Ú, Fikrettin Þ, Karaman U (2005) Antimicrobial effects of Ocimum basilicum (Labiatae) extract. Turk J Biol 29:155–160

    Google Scholar 

  2. Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  3. Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490

    Article  PubMed  Google Scholar 

  4. Amer A, Mehlhorn H (2006c) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477

    Article  PubMed  Google Scholar 

  5. Amer A, Mehlhorn H (2006d) The sensilla of Aedes and Anopheles mosquitoes and their importance in repellency. Parasitol Res 99:491–499

    Article  PubMed  Google Scholar 

  6. Azizullah A, Rehman ZU, Ali I, Murad W, Muhammad N, Ullah W, Hader D-P (2014) Chlorophyll derivatives can be an efficient weapon in the fight against dengue. Parasitol Res 113:4321–4326

    Article  PubMed  Google Scholar 

  7. Bagavan A, Rahuman AA, Kamaraj C, Kaushik NK, Mohanakrishnan D, Sahal D (2011a) Antiplasmodial activity of botanical extracts against Plasmodium falciparum. Parasitol Res 108:1099–1109

    Article  PubMed  Google Scholar 

  8. Bagavan A, Rahuman AA, Kaushik NK, Sahal D (2011b) In vitro antimalarial activity of medicinal plant extracts against Plasmodium falciparum. Parasitol Res 108:15–22

    Article  PubMed  Google Scholar 

  9. Becker N (2011) Natural remedies in the fight against insects. In: Mehlhorn H (ed) Nature helps. Parasitol Res Monographs 1: 55–76

  10. Benelli G (2015a) Research in mosquito control: current challenges for a brighter future. Parasitol Res, doi:10.1007/s00436-015-4586-9

  11. Benelli G (2015b) Plant-synthesized nanoparticles in the fight against mosquito vectors: an eco-friendly tool against mosquito vectors? In: “Nanoparticles in the fight against parasites” (Editor Heinz Mehlhorn), Parasitology Research Monographs, Springer, 2192–3671, in press

  12. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397

    Article  PubMed  Google Scholar 

  13. Bhat PG, Surolia N (2001) In vitro antimalarial activity of extracts of three plants used in the traditional medicine of India. Am J Trop Med Hyg 65:304–308

    CAS  PubMed  Google Scholar 

  14. Chopra RN, Nayar SL, Chopra IC (1956) Glossary of Indian medicinal plants. CSIR, New Delhi, p 179

    Google Scholar 

  15. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 14:1519–1529

    Article  Google Scholar 

  16. Egharevba Omoregie H, Anselem OC, Abdullahi MS, Sabo M, Okwute et al (2010) Phytochemical analysis and broad spectrum antimicrobial activity of Cassia occidentalis L. (whole plant) New York Sci J 3:74–81

  17. Elliot M, Janesn NF, Potter C (1978) The future of pyrethroids in insect control. Annu Rev Entomol 23:443–469

    CAS  Article  Google Scholar 

  18. El-Tahir A, Satti GMH, Khalid SA (1999) Antiplasmodial activity of selected sudanese medicinal plants with emphasis on Acacia nilotica. Phytother Res 13:474–478

    CAS  Article  PubMed  Google Scholar 

  19. Finney DJ (1971) Probit analysis. Cambridge University, London, pp 68–78

    Google Scholar 

  20. Gasquet M, Delmas F, Timon-David P, Keita A, Guido M, Koita N, Diallo D, Doumbo O (1993) Evaluation in vitro and in vivo of a traditional antimalarial, ‘malarial 5’. Fitoterapia 64:423–426

    Google Scholar 

  21. Govindarajan M, Sivakumar R, Rajeswary M, Yogalakshmi K (2013) Chemical composition and larvicidal activity of essential oil from Ocimum basilicum (L.) against Culex tritaeniorhynchus, Aedes albopictus and Anopheles subpictus (Diptera: Culicidae). Exp Parasitol 134:7–11

    CAS  Article  PubMed  Google Scholar 

  22. Ibrahim MA, Aliyu AB, Sallau AB, Bashir M, Yunusa I, Umar TS (2010) Senna occidentalis leaf extract possesses antitrypanosomal activity and ameliorates the trypanosome-induced anemia and organ damage. Pharmacogn Res 2:175–180

    CAS  Article  Google Scholar 

  23. Jensen M, Mehlhorn H (2009) Seventy-five years of Resochin® in the fight against malaria. Parasitol Res 105:609–627

    Article  PubMed  Google Scholar 

  24. Kamaraj PC, Rahuman AA, Bagavan A (2008) Screening for antifeedant and larvicidal activity of plant extracts against Helicoverpa armigera (Hübner), Sylepta derogata (F.) and Anopheles stephensi (Liston). Parasitol Res 103:1361–1368

    CAS  Article  PubMed  Google Scholar 

  25. Kaou AM, Mahiou-Leddet V, Hutter S, Aïnouddine S, Hassani S, Yahaya I, Azas N, Ollivier E (2008) Antimalarial activity of crude extracts from nine African medicinal plants. J Ethnopharmacol 116:74–83

    Article  PubMed  Google Scholar 

  26. Kayembe JS, Taba KM, Ntumba K, Tshiongo MTC, Kazadi TK (2010) In vitro anti-malarial activity of 20 quinones isolated from four plants used by traditional healers in the Democratic Republic of Congo. J Med Plant Res 4:991–994

    CAS  Google Scholar 

  27. Khare CP (2007) Indian medicinal plants. Springer, USA

    Google Scholar 

  28. Kovendan K, Murugan K, Vincent S, Barnard DR (2012) Studies on larvicidal and pupicidal activity of Leucas aspera Willd (Lamiaceae) and bacterial insecticide, Bacillus sphaericus against malarial vector Anopheles stephensi Liston (Diptera: Culicidae). Parasitol Res 110:195–203

    Article  PubMed  Google Scholar 

  29. Liu H, Xu Q, Zhang L, Liu N (2005) Chlorpyrifos resistance in mosquito Culex quinquefasciatus. J Med Entomol 42:815–820

    CAS  Article  PubMed  Google Scholar 

  30. Mehlhorn H (ed) (2011) Nature helps. How plants and other organisms contribute to solve health problems. Parasitol Res Monographs, Springer, Berlin, New York, pp 1–372

  31. Mehlhorn H, Schmahl G, Schmidt J (2005) Extract of the seeds of the plant Vitex agnus castus proven to be highly efficacious as a repellent against ticks, fleas, mosquitoes and biting flies. Parasitol Res 95:363–365

    Article  PubMed  Google Scholar 

  32. Mehlhorn H, Al-Rasheid KA, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265

    Article  PubMed  Google Scholar 

  33. Murugan K, Murugan P, Noortheen A (2007) Larvicidal and repellent potential of Albizzia amara Boivin and Ocimum basilicum Linn against dengue vector, Aedes aegypti (Insecta: Diptera: Culicidae). Bioresour Technol 98:198–201

  34. Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Kumar PM, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res 114:2243–2253

  35. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138

  36. Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015c) Enhanced predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles. Parasitol Res. doi:10.1007/s00436-015-4582-0

  37. Murugan K, Venus JSE, Panneerselvam C, Bedini S, Conti B, Nicoletti M, Kumar Sarkar S, Hwang JS, Subramaniam J, Madhiyazhagan P, Mahesh Kumar P, Dinesh D, Suresh U, Benelli G (2015d) Biosynthesis, mosquitocidal and antibacterial properties of Toddalia asiatica-synthesized silver nanoparticles: do they impact predation of guppy Poecilia reticulata against the filariasis mosquito Culex quinquefasciatus? Environ Sci Poll Res, doi:10.1007/s11356-015-4920-x

  38. Nguta JM, Mbaria JM, Gakuya DW, Gathumbi PK, Kiama SG (2010) Antimalarial herbal remedies of Msambweni, Kenya. J Ethnopharmacol 128:424–432

    CAS  Article  PubMed  Google Scholar 

  39. Ntonga PA, Baldovini N, Mouray E, Mambu L, Belong P, Grellier P (2014) Activity of Ocimum basilicum, Ocimum canum, and Cymbopogon citratus essential oils against Plasmodium falciparum and mature-stage larvae of Anopheles funestus s.s. Parasite 21:1–8

    Article  Google Scholar 

  40. Panneerselvam C, Murugan K (2013) Adulticidal, repellent, and ovicidal properties of indigenous plant extracts against the malarial vector, Anopheles stephensi (Diptera: Culicidae). Parasitol Res 112:679–692

    Article  PubMed  Google Scholar 

  41. Rahuman AA (2011) Efficacies of medicinal plant extracts against blood-sucking parasites. In: Mehlhorn H (ed) Nature helps. Parasitol Res Monographs 1: 19–54

  42. Raja V, John R, Alex E, William JS (2014) Insecticidal and growth regulating activity of crude leaf extracts of Cassia occidentalis L. (Caesalpiniaceae) against the urban malaria vector, Anopheles stephensi Liston (Diptera: Culicidae). Asian Pac J Trop Dis 4:S578–S582

    Article  Google Scholar 

  43. Semmler M, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn H (2009) Nature helps: from research to products against blood sucking arthropods. Parasitol Res 105:1483–1487

    Article  PubMed  Google Scholar 

  44. Siddiqui BS, Aslam H, Ali ST, Begum S, Khatoon N (2007a) Two new triterpenoids and a steroidal glycoside from the aerial parts of Ocimum basilicum. Chem Pharm Bull (Tokyo) 55:516–519

    CAS  Article  Google Scholar 

  45. Siddiqui BS, Aslam H, Begum S, Ali ST (2007b) New cinnamic acid esters from Ocimum basilicum. Nat Prod Res 21:736–741

    CAS  Article  PubMed  Google Scholar 

  46. Siems KJ, Mockenhaupt FP, Bienzle U, Gupta MP, Eich E (1999) In vitro antiplasmodial activity of Central American medicinal plants. Trop Med Int Health 4:611–615

    Article  Google Scholar 

  47. Simon JE, Morales MR, Phippen WB, Vieira RF, Hao Z (1999) A source of aroma compounds and a popular culinary and ornamental herb. In: Janick J (ed) Perspectives on new crops and new uses. ASHS Press, Alexandria, pp 499–505

    Google Scholar 

  48. Smilkstein M, Sriwilaijaroen N, Kelly JX, Wilairat P, Riscoe M (2004) Simple and inexpensive fluorescence-based technique for high throughput antimalarial drug screening. Antimicrob Agents Chemother 48:1803–1806

  49. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    Article  PubMed  Google Scholar 

  50. Taylor L (2005) The healing power of rainforest herbs. http://www.raintree.com/fedegosa.htm

  51. Thangam S, Kathiresan K (1992) Smoke repellency and killing effect of marine plants against Culex quinquefasciatus. Trop Biomed 9:35–38

    Google Scholar 

  52. Tona L, Ngimbi NP, Tsakala M, Mesia K, Cimanga K, Apers S, De Bruyne T, Pieters L, Totté J, Vlietinck AJ (1999) Antimalarial activity of 20 crude extracts from nine African medicinal plants used in Kinshasa, Congo. J Ethnopharmacol 68:193–203

    CAS  Article  PubMed  Google Scholar 

  53. Tona L, Mesia K, Ngimbi NP, Chrimwami B, Okond'ahoka, Cimanga K, de Bruyne T, Apers S, Hermans N, Totte J, Pieters L, Vlietinck AJ (2001) In-vivo antimalarial activity of Cassia occidentalis, Morinda morindoides and Phyllanthus niruri. Ann Trop Med Parasitol 95:47–57

    CAS  Article  PubMed  Google Scholar 

  54. Tona L, Cimanga RK, Mesia K, Musuamba CT, De Bruyne T, Apers S, Hernans N, Miert SV, Pieters L, Totté J, Vlietinck AJ (2004) In vitro antiplasmodial activity of extracts and fractions from seven medicinal plants used in Democratic Republic of Congo. J Ethnopharmacol 93:27–32

    CAS  Article  PubMed  Google Scholar 

  55. Trager W, Jensen J (1976) Human malaria parasites in continuous culture. Science 193:673–675

    CAS  Article  PubMed  Google Scholar 

  56. Usha Devi C, Neena V, Atul PK, Pillai CR (2001) Antiplasmodial effect of three medicinal plants: a preliminary study. Curr Sci 80:917–919

    Google Scholar 

  57. Vahiha R, Venkatachalam MR, Murugan K, Jebanesan A (2002) Larvicidal efficacy of Pavonia zeylanica L. and Acacia ferruginea D.C. against Culex quinquefasciatus say. Bioresour Technol 82:203–204

    Article  Google Scholar 

  58. Wattanachai P, Tintanon B (1999) Resistance of Aedes aegypti to chemical compounds in aerosol insecticide products in different areas of Bangkok Thailand. Comm Dis J 25:188–191

    Google Scholar 

  59. WHO (2005) Guidelines for laboratory and field-testing of mosquito larvicides. WHO/CDS/WHOPES/GCDPP/2005.13

  60. WHO (2014) Malaria. Fact sheet N°94

  61. Yadav JP, Arya V, Yadav S, Panghal M, Kumar S, Dhankhar S (2010) Cassia occidentalis L.: a review on its ethnobotany, phytochemical and pharmacological profile. Fitoterapia 81:223–230

    CAS  Article  PubMed  Google Scholar 

  62. Zheljazkov VD, Callahan A, Cantrell CL (2008) Yield and oil composition of 38 basil (Ocimum basilicum L.) accessions grown in Mississippi. J Agric Food Chem 56:241–245

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful to Mr. N. Muthukrishnan and Mr. A. Anbarasan (National Centre for Diseases Control, Mettupalayam, India) for their help in the mosquito collection and identification. We would like to thank the Department of Science and Technology (New Delhi, India), Project No. DST/SB/EMEQ-335/2013, for providing the financial support. This work was also supported by the King Saud University, Deanship of Scientific Research, and College of Sciences Research Center. Funders had no role in the study design, the data collection and analysis, the decision to publish, or the preparation of the manuscript.

Conflicts of interest

The authors declare that they have no competing interests. Heinz Mehlhorn and Giovanni Benelli are Editor in Chief and Editorial Board Member of Parasitology Research, respectively. This does not alter the authors’ adherence to all the Parasitology Research policies on sharing data and materials.

Compliance with ethical standards

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Murugan, K., Aarthi, N., Kovendan, K. et al. Mosquitocidal and antiplasmodial activity of Senna occidentalis (Cassiae) and Ocimum basilicum (Lamiaceae) from Maruthamalai hills against Anopheles stephensi and Plasmodium falciparum . Parasitol Res 114, 3657–3664 (2015). https://doi.org/10.1007/s00436-015-4593-x

Download citation

Keywords

  • Botanical insecticides
  • Chloroquine-resistant parasites
  • Mosquito-borne diseases
  • Smoke toxicity