Parasitology Research

, Volume 114, Issue 8, pp 2801–2805 | Cite as

Research in mosquito control: current challenges for a brighter future

  • Giovanni BenelliEmail author


Mosquitoes (Diptera: Culicidae) are a key threat for millions of people worldwide, since they act as vectors for devastating pathogens and parasites. In this scenario, vector control is crucial. Mosquito larvae are usually targeted using organophosphates, insect growth regulators, and microbial agents. Indoor residual spraying and insecticide-treated bed nets are also employed. However, these chemicals have negative effects on human health and the environment and induce resistance in a number of vectors. Newer and safer tools have been recently implemented to enhance control of mosquitoes. Here, I focus on some crucial challenges about eco-friendly control of mosquito vectors, mainly the improvement of behavior-based control strategies (sterile insect technique (“SIT”) and “boosted SIT”) and plant-borne mosquitocidals, including green-synthesized nanoparticles. A number of hot areas that need further research and cooperation among parasitologists, entomologists, and behavioral ecologists are highlighted.


Behavior-based control tools Botanical insecticides Culicidae Mosquito-borne diseases Mosquitocidal nanoparticles Sterile insect technique 



I would like to thank Heinz Mehlhorn and the anonymous reviewers for improving the earlier version of the manuscript. I am grateful to Annalisa Lo Iacono, my colleagues and lab members for the helpful discussions on the topic.

Conflict of interest

The author declares no competing interests. Giovanni Benelli is currently an Editorial Board Member of Parasitology Research, but this does not alter the author’s adherence to all the Parasitology Research policies on sharing data and materials.


  1. Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472PubMedCrossRefGoogle Scholar
  2. Amer A, Mehlhorn H (2006b) Repellency effect of forty-one essential oils against Aedes, Anopheles and Culex mosquitoes. Parasitol Res 99:478–490PubMedCrossRefGoogle Scholar
  3. Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2015) Mico-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci. doi: 10.1007/s10340-015-0675-x
  4. Assogba BS, Djogbénou L, Saizonou J, Diabaté A, Dabire RK, Gilles J, Makoutode M, Baldet T (2014) Characterization of swarming and mating behaviour between Anopheles coluzzii and Anopheles melas in a sympatry area of Benin. Acta Trop 132S:S53–S63CrossRefGoogle Scholar
  5. Balestrino F, Medici A, Candini G, Carrieri M, Maccagnani B, Calvitti M, Maini S, Bellini R (2010) γ ray dosimetry and mating capacity studies in the laboratory on Aedes albopictus males. J Med Entomol 47:581–591PubMedGoogle Scholar
  6. Bargielowski I, Alphey L, Koella JC (2011) Cost of mating and insemination capacity of a genetically modified mosquito Aedes aegypti OX513A compared to its wild type counterpart. PLoS ONE 6:e26086PubMedCentralPubMedCrossRefGoogle Scholar
  7. Baun A, Hartmann NB, Grieger K, Kusk KO (2008) Ecotoxicity of engineered nanoparticles to aquatic invertebrates: a brief review and recommendations for future toxicity testing. Ecotoxicology 17:387–395PubMedCrossRefGoogle Scholar
  8. Bellini R, Balestrino F, Medici A, Gentile G, Veronesi R, Carrieri M (2013) Mating competitiveness of Aedes albopictus radio-sterilized males in large enclosures exposed to natural conditions. J Med Entomol 50:94–102PubMedCrossRefGoogle Scholar
  9. Bellini R, Puggioli A, Balestrino F, Brunelli P, Medici A, Urbanelli S, Carrieri M (2014) Sugar administration to newly emerged Aedes albopictus males increases their survival probability and mating performance. Acta Trop 132S:S116–S123CrossRefGoogle Scholar
  10. Benelli G (2015) The best time to have sex: mating behaviour and effect of daylight time on male sexual competitiveness in the Asian tiger mosquito, Aedes albopictus (Diptera: Culicidae). Parasitol Res 114:887–894PubMedCrossRefGoogle Scholar
  11. Benelli G, Conti B, Garreffa R, Nicoletti M (2014) Shedding light on bioactivity of botanical by-products: neem cake compounds deter oviposition of the arbovirus vector Aedes albopictus (Diptera: Culicidae) in the field. Parasitol Res 113:933–940PubMedCrossRefGoogle Scholar
  12. Benelli G, Bedini S, Cosci F, Toniolo C, Conti B, Nicoletti M (2015a) Larvicidal and ovideterrent properties of neem oil and fractions against the filariasis vector Aedes albopictus (Diptera: Culicidae): a bioactivity survey across production sites. Parasitol Res 114:227–236PubMedCrossRefGoogle Scholar
  13. Benelli G, Murugan K, Panneerselvam C, Madhiyazhagan P, Conti B, Nicoletti M (2015b) Old ingredients for a new recipe? Neem cake, a low-cost botanical by-product in the fight against mosquito-borne diseases. Parasitol Res 114:391–397Google Scholar
  14. Benelli G, Romano D, Messing RH, Canale A (2015c) First report of behavioural lateralisation in mosquitoes: right-biased kicking behaviour against males in females of the Asian tiger mosquito, Aedes albopictus. Parasitol Res 114:1613–1617Google Scholar
  15. Bouyer J, Lefrançois T (2014) Boosting the sterile insect technique to control mosquitoes. Trends Parasitol 30:271–273PubMedCrossRefGoogle Scholar
  16. Boyer S, Gilles J, Meracienne D, Lemperiere G, Fontenille D (2011) Sexual performance of male mosquito Aedes albopictus. Med Vet Entomol 25:454–459PubMedCrossRefGoogle Scholar
  17. Butail S, Manoukis NC, Diallo M, Ribeiro J, Lehmann T, Paley D (2012) Reconstructing the flight kinematics of swarming and mating behaviour in wild mosquitoes. J R Soc Interface 7:2624–2638CrossRefGoogle Scholar
  18. Cabrera M, Jaffe K (2007) An aggregation pheromone modulates lekking behavior in the vector mosquito Aedes aegypti (Diptera: Culicidae). J Am Mosq Control Assoc 23:1–10PubMedCrossRefGoogle Scholar
  19. Cator LJ, Harrington LC (2010) The harmonic convergence of fathers predicts the mating success of sons in Aedes aegypti. Anim Behav 82:627–633CrossRefGoogle Scholar
  20. Cator LJ, Harrington LC (2011) Harmonic convergence of fathers and the mating success of sons in the yellow fever mosquito. Anim Behav 82:627–633PubMedCentralPubMedCrossRefGoogle Scholar
  21. Chadee DD, Gilles JRL (2014) The diel copulation periodicity of the mosquito, Aedes aegypti (L.) (Diptera: Culicidae) at indoor and outdoor sites in Trinidad, West Indies. Acta Trop 132S:S91–S95CrossRefGoogle Scholar
  22. Charlwood JD, Pinto J, Sousa CA, Madsen H, Ferreira C, do Rosario VE (2002) The swarming and mating behaviour of Anopheles gambiae s.s. (Diptera: Culicidae) from Sao Tomé Island. J Vector Ecol 27:178–183PubMedGoogle Scholar
  23. Charlwood JD, Thompson R, Madsen H (2003) Observations on the swarming and mating behaviour of Anopheles funestus from southern Mozambique. Malaria J 2:2CrossRefGoogle Scholar
  24. Dabiré KR, Sawadogo PS, Hien DF, Maiga H, Millogo A, Baldet T, Simard F, Gouagna L-C, Diabate A, Gibson G, Lees RS, Gilles JRL (2014) Occurrence of natural Anopheles arabiensis swarms in an urban area of Bobo-Dioulasso city, Burkina Faso, West Africa. Acta Trop 132S:S35–S41CrossRefGoogle Scholar
  25. Dinesh D, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Jiang W, Benelli G, Chandramohan B, Suresh U (2015) Mosquitocidal and antibacterial activity of green-synthesized silver nanoparticles from Aloe vera extracts: towards an effective tool against the malaria vector Anopheles stephensi? Parasitol Res 114:1519–1529PubMedCrossRefGoogle Scholar
  26. Fabrega J, Luoma SN, Tyler CR, Galloway TS, Lead JR (2011) Silver nanoparticles: behaviour and effects in the aquatic environment. Environ Int 37:517–531PubMedCrossRefGoogle Scholar
  27. Haldar KM, Haldar B, Chandra G (2013) Fabrication, characterization and mosquito larvicidal bioassay of silver nanoparticles synthesized from aqueous fruit extract of putranjiva, Drypetes roxburghii (Wall.). Parasitol Res 112:1451–1459PubMedCrossRefGoogle Scholar
  28. Hamady D, Ruslan NB, Ahmad AH, Rawi CSM, Hamad H, Satho T et al (2013) Colonized Aedes albopictus and its sexual performances in the wild: implications for SIT technology and containment. Parasit Vect 6:206CrossRefGoogle Scholar
  29. Hemingway J, Ranson H (2000) Insecticide resistance in insect vectors of human disease. Annu Rev Entomol 45:371–391PubMedCrossRefGoogle Scholar
  30. Heng MY, Tan SN, Yong JWH, Ong ES (2013) Emerging green technologies for the chemical standardization of botanicals and herbal preparations. Trends Anal Chem 50:1–10CrossRefGoogle Scholar
  31. Iovinella I, Pelosi P, Conti B (2014) A rationale to design longer lasting mosquito repellents. Parasitol Res 113:1813–1820PubMedCrossRefGoogle Scholar
  32. Lees RS, Knols B, Bellini R, Benedict MQ, Bheecarry A, Bossin HC et al (2014) Review: improving our knowledge of male mosquito biology in relation to genetic control programmes. Acta Trop 132S:S2–S11CrossRefGoogle Scholar
  33. Lees RS, Gilles JRL, Hendrichs J, Vreysen MJB, Bourtzis K (2015) Back to the future: the sterile insect technique against mosquito disease vectors. Curr Opin Insect Sci 10:156–162CrossRefGoogle Scholar
  34. Madakacherry O, Lees RS, Gilles JRL (2014) Aedes albopictus (Skuse) males in laboratory and semi-field cages: release ratios and mating competitiveness. Acta Trop 132S:124–129CrossRefGoogle Scholar
  35. Maïga H, Niang A, Sawadogo SP, Dabiré RK, Lees RS, Gilles JRL, Tripet F, Diabaté A (2014) Role of nutritional reserves and body size in Anopheles gambiae males mating success. Acta Trop 132S:S102–S107CrossRefGoogle Scholar
  36. Mehlhorn H (2008) Encyclopedia of parasitology, 3rd edn. Springer, HeidelbergCrossRefGoogle Scholar
  37. Mehlhorn H, Al-Rasheid KAS, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265PubMedCrossRefGoogle Scholar
  38. Moretti R, Calvitti M (2013) Male mating performance and cytoplasmic incompatibility in a wPip Wolbachia trans-infected line of Aedes albopictus (Stegomyia albopicta). Med Vet Entomol 27:377–386PubMedCrossRefGoogle Scholar
  39. Murugan K, Benelli G, Ayyappan S, Dinesh D, Panneerselvam C, Nicoletti M, Hwang JS, Mahesh Kumar P, Subramaniam J, Suresh U (2015a) Toxicity of seaweed-synthesized silver nanoparticles against the filariasis vector Culex quinquefasciatus and its impact on predation efficiency of the cyclopoid crustacean Mesocyclops longisetus. Parasitol Res. doi: 10.1007/s00436-015-4417-z Google Scholar
  40. Murugan K, Benelli G, Panneerselvam C, Subramaniam J, Jeyalalitha T, Dinesh D, Nicoletti M, Hwang JS, Suresh U, Madhiyazhagan P (2015b) Cymbopogon citratus-synthesized gold nanoparticles boost the predation efficiency of copepod Mesocyclops aspericornis against malaria and dengue mosquitoes. Exp Parasitol 153:129–138. doi: 10.1016/j.exppara.2015.03.017 PubMedCrossRefGoogle Scholar
  41. Murugan K, Priyanka V, Dinesh D, Madhiyazhagan P, Panneerselvam C, Subramaniam J, Suresh U, Chandramohan B, Roni M, Nicoletti M, Alarfaj AA, Higuchi A, Munusamy MA, Khater HF, Messing RH, Benelli G (2015c) Enhanced predation by Asian bullfrog tadpoles, Hoplobatrachus tigerinus, against the dengue vector Aedes aegypti in an aquatic environment treated with mosquitocidal nanoparticles: towards “boosted” biological control? Parasitol Res. doi: 10.1007/s00436-015-4582-0
  42. O’Connor L, Plichart C, Sang AC, Brelsfoard CL, Bossin HC, Dobson SL (2012) Open release of male mosquitoes infected with a Wolbachia biopesticide: field performance and infection containment. PLoS Negl Trop Dis 6:e4797Google Scholar
  43. Oberdorster E, Zhu S, Michelle Blickley T, McClellan-Green P, Haasch ML (2006) Ecotoxicology of carbon-based engineered nanoparticles: effects of fullerene (C60) on aquatic organisms. Carbon 44:1112–1120CrossRefGoogle Scholar
  44. Oliva CF, Jacquet M, Gilles J, Lemperiere G, Maquart PO, Quilici S, Schooneman F, Vreysen MJB, Boyer S (2012) The sterile insect technique for controlling populations of Aedes albopictus (Diptera: Culicidae) on Reunion Island: mating vigour of sterilized males. PLoS ONE 7:e49414PubMedCentralPubMedCrossRefGoogle Scholar
  45. Oliva CF, Damiens D, Vreysen MJB, Lemperière, Gilles J (2013) Reproductive strategies of Aedes albopictus (Diptera: Culicidae) and implications for the sterile insect technique. PLoS ONE 8:e78884PubMedCentralPubMedCrossRefGoogle Scholar
  46. Oliva CF, Damiens D, Benedict MQ (2014) Male reproductive biology of Aedes mosquitoes. Acta Trop 132S:S512–S519Google Scholar
  47. Park J, Kim S, Yoo J, Lee JS, Park JW, Jung J (2014) Effect of salinity on acute copper and zinc toxicity to Tigriopus japonicus: the difference between metal ions and nanoparticles. Mar Pollut Bull 85:526–531PubMedCrossRefGoogle Scholar
  48. Patil CD, Patil SV, Borase HP, Salunke BK, Salunkhe RB (2012a) Larvicidal activity of silver nanoparticles synthesized using Plumeria rubra plant latex against Aedes aegypti and Anopheles stephensi. Parasitol Res 110:1815–1822PubMedCrossRefGoogle Scholar
  49. Patil CD, Borase HP, Patil SV, Salunkhe RB, Salunke BK (2012b) Larvicidal activity of silver nanoparticles synthesized using Pergularia daemia plant latex against Aedes aegypti and Anopheles stephensi and nontarget fish Poecilia reticulata. Parasitol Res 111:555–562PubMedCrossRefGoogle Scholar
  50. Pennetier C, Warren B, Dabiré R, Russell IJ, Gibson G (2010) “Singing on the wing” as a mechanism for species recognition in the malarial mosquito Anopheles gambiae. Curr Biol 20:131–136PubMedCrossRefGoogle Scholar
  51. Pitts RJ, Mozūraitis R, Gauvin-Bialecki A, Lempérière G (2014) The roles of kairomones, synomones and pheromones in the chemically-mediated behaviour of male mosquitoes. Acta Trop 132S:S26–S34CrossRefGoogle Scholar
  52. Rajan R, Chandran K, Harper SL, Yun SI, Kalaichelvan PT (2015) Plant extract synthesized nanoparticles: an ongoing source of novel biocompatible materials. Ind Crop Prod 70:356–373CrossRefGoogle Scholar
  53. Ramanibai R, Velayutham K (2015) Bioactive compound synthesis of Ag nanoparticles from leaves of Melia azedarach and its control for mosquito larvae. Res Vet Sci 98:82–88PubMedCrossRefGoogle Scholar
  54. Rawani A, Ghosh A, Chandra G (2013) Mosquito larvicidal and antimicrobial activity of synthesized nano-crystalline silver particles using leaves and green berry extract of Solanum nigrum L. (Solanaceae: Solanales). Acta Trop 128:613–622PubMedCrossRefGoogle Scholar
  55. Sawadogo P, Diabaté A, Sanon A, Toé H, Baldet T, Gibson G, Gilles J, Simard F, Sinkins S, Dabiré K (2013) Effects of age and size on Anopheles gambiae s.s. male mosquito mating success. J Med Entomol 50:285–293PubMedCrossRefGoogle Scholar
  56. Semmler M, Abdel-Ghaffar F, Al-Rasheid KAS, Mehlhorn H (2009) Nature helps: from research to products against blood-sucking arthropods. Parasitol Res 105:1483–1487PubMedCrossRefGoogle Scholar
  57. South SH, Arnqvist G (2009) Male mating costs in a polygynous mosquito with ornaments expressed in both sexes. Proc R Soc B 276:3671–3678PubMedCentralPubMedCrossRefGoogle Scholar
  58. Subarani S, Sabhanayakam S, Kamaraj C (2013) Studies on the impact of biosynthesized silver nanoparticles (AgNPs) in relation to malaria and filariasis vector control against Anopheles stephensi Liston and Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 112:487–499PubMedCrossRefGoogle Scholar
  59. Sujitha V, Murugan K, Paulpandi M, Panneerselvam C, Suresh U, Roni M, Nicoletti M, Higuchi A, Madhiyazhagan P, Subramaniam J, Dinesh D, Vadivalagan C, Chandramohan B, Alarfaj AA, Munusamy MA, Barnard DR, Benelli G (2015) Green-synthesized silver nanoparticles as a novel control tool against dengue virus (DEN-2) and its primary vector Aedes aegypti. Parasitol Res. doi: 10.1007/s00436-015-4556-2 PubMedGoogle Scholar
  60. Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562PubMedCrossRefGoogle Scholar
  61. Wiwatanaratanabutr I, Allan S, Linthicum K, Kittayapong P (2010) Strain-specific differences in mating, oviposition, and host-seeking behaviour between Wolbachia-infected and uninfected Aedes albopictus. J Am Mosq Control Assoc 26:265–273PubMedCrossRefGoogle Scholar
  62. Xue RD, Barnard DR, Ali A (2001) Laboratory and field evaluation of insect repellents as oviposition deterrents against the mosquito Aedes albopictus. Med Vet Entomol 15:126–131PubMedCrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.Insect Behavior Group, Department of Agriculture, Food and EnvironmentUniversity of PisaPisaItaly

Personalised recommendations