Skip to main content
Log in

Efficacy of cyantraniliprole fly bait against housefly (Musca domestica L.) under laboratory conditions

  • Short Communication
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Novel and effective baits are needed to manage pest housefly populations and avoid the development of insecticide resistance. In this study, we bioassayed the efficacy of Zyrox®, a novel fly bait containing a novel 0.5 % cyantraniliprole insecticide, to kill adult houseflies under laboratory conditions. We found that Zyrox® killed a significantly greater proportion of flies than the current competing fly bait, QuickBayt®, after a 24-h exposure. The cumulative mortalities of houseflies were up to 96.36 % and 92.57 % for Zyrox® and 78.88 % and 68.76 % for QuickBayt® in no-choice and choice tests, respectively. Our results suggested that there was negligible behavioral resistance to both fly baits but revealed that Zyrox® appeared to work slower than QuickBayt® (at a 3-h exposure, proportionally fewer flies were killed by Zyrox® than by QuickBayt®). Importantly, we found that the efficacy of Zyrox® did not diminish with the age of the bait (up to 90 days old). In actual knockdown time (KDT) feeding bioassay, the results showed that Zyrox® knocked down flies significantly slower (11.97 min for females; 12.30 min for males) than QuickBayt® (1.89 min for females; 2.24 min for males). These results reveal the high efficacy of Zyrox® bait to kill adult flies and suggest that it is a promising slow-action bait for management of houseflies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

References

  • Abbas N, Khan HA, Shad SA (2014) Cross-resistance, genetics, and realized heritability of resistance to fipronil in the house fly, Musca domestica (Diptera: Muscidae): a potential vector for disease transmission. Parasitol Res 113:1343–1352

    Article  PubMed  Google Scholar 

  • Abbott MS (1925) A method of computing effectiveness of an insecticide. J Econ Entomol 18:265–267

    Article  CAS  Google Scholar 

  • Ahmad A, Zurek L (2009) Evaluation of metaflumizone granular fly bait for management of houseflies. Med Vet Entomol 23:167–169

    Article  CAS  PubMed  Google Scholar 

  • Butler SM, Gerry AC, Mullens BA (2007) House fly (Diptera: Muscidae) activity near baits containing (Z)-9-tricosene and efficacy of commercial toxic fly baits on a southern California dairy. J Econ Entomol 100:1489–1495

    Article  CAS  PubMed  Google Scholar 

  • Darbro JM, Mullens BA (2004) Assessing insecticide resistance and aversion to methomyl-treated toxic baits in Musca domestica L (Diptera: Muscidae) populations in southern California. Pest Manag Sci 60:901–908

    Article  CAS  PubMed  Google Scholar 

  • De Jesus AJ, Olsen AR, Bryce JR, Whiting RC (2004) Quantitative contamination and transfer of Escherichia coli from foods by houseflies, Musca domestica L. (Diptera: Muscidae). Int J Food Microbiol 93:259–262

    Article  PubMed  Google Scholar 

  • Förster M, Klimpel S, Mehlhorn H, Sievert K, Messler S, Pfeffer K (2007) Pilot study on synanthropic flies (e.g. Musca, Sarcophaga, Calliphora, Fannia, Lucilia, Stomoxys) as vectors of pathogenic microorganisms. Parasitol Res 101:243–246

    Article  PubMed  Google Scholar 

  • Gravalos C, Fernandez E, Belando A, Moreno I, Ros C, Bielza P (2014) Cross-resistance and baseline susceptibility of Mediterranean strains of Bemisia tabaci to cyantraniliprole. Pest Manag Sci

  • Howard JJ, Wall R (1998) Effects of contrast on attraction of the housefly, Musca domestica, to visual targets. Med Vet Entomol 12:322–324

    Article  CAS  PubMed  Google Scholar 

  • Keiding J (1999) Review of the global status and recent development of insecticide resistance in field populations of the housefly, Musca domestica (Diptera: Muscidae). Bull Entomol Res 89:1–67

    Google Scholar 

  • Legner EF, Dietrick EJ (1974) Effectiveness of supervised control practices in lowering population densities of synanthropic flies on poultry ranches. Entomophaga 19:467–478

    Article  Google Scholar 

  • Liu N, Yue X (2000) Insecticide resistance and cross-resistance in the house fly (Diptera: Muscidae). J Econ Entomol 93:1269–1275

    Article  CAS  PubMed  Google Scholar 

  • Mullens BA, Gerry AC, Diniz AN (2010) Field and laboratory trials of a novel metaflumizone house fly (Diptera: Muscidae) bait in California. J Econ Entomol 103:550–556

    Article  CAS  PubMed  Google Scholar 

  • Murillo AC, Gerry AC, Gallagher NT, Peterson NG, Mullens BA (2014) Laboratory and field assessment of cyantraniliprole relative to existing fly baits. Pest Manag Sci

  • Nayduch D, Noblet GP, Stutzenberger FJ (2002) Vector potential of houseflies for the bacterium Aeromonas caviae. Med Vet Entomol 16:193–198

    Article  CAS  PubMed  Google Scholar 

  • SAC (2009) Standardization Administration of China (SAC) Laboratory efficacy test methods and criterions of public health insecticides for pesticide registration—Part 7: Bait. http://down.foodmate.net/standard/sort/3/19848.html

  • Sattelle DB, Cordova D, Cheek TR (2008) Insect ryanodine receptors: molecular targets for novel pest control chemicals. Invert Neurosci 8:107–119

    Article  CAS  PubMed  Google Scholar 

  • Selby TP, Lahm GP, Stevenson TM, Hughes KA, Cordova D, Annan IB, Barry JD, Benner EA, Currie MJ, Pahutski TF (2013) Discovery of cyantraniliprole, a potent and selective anthranilic diamide ryanodine receptor activator with cross-spectrum insecticidal activity. Bioorg Med Chem Lett 23:6341–6345

    Article  CAS  PubMed  Google Scholar 

  • Shi MA, Yuan JZ, Wu J, Zhuang PJ, Wu XF, Tang ZH (2002) Kinetic analysis of acetylcholinesterase in a propoxur-resistant strain of housefly (Musca domestica) from Shanghai, China. Pestic Biochem Physiol 72:72–82

    Article  CAS  Google Scholar 

  • Wanaratana S, Panyim S, Pakpinyo S (2011) The potential of house flies to act as a vector of avian influenza subtype H5N1 under experimental conditions. Med Vet Entomol 25:58–63

    Article  CAS  PubMed  Google Scholar 

  • Wei XQ, Lu YH, Li ZL, Zhang SF, Bai YG, Pan JH (2013) Deltamethrin-resistance development rule and cross-resistance of Musca domestica. Chin J Hyg Insecticides Equip 19:313–317

    CAS  Google Scholar 

  • White WH, McCoy CM, Meyer JA, Winkle JR, Plummer PR, Kemper CJ, Starkey R, Snyder DE (2007) Knockdown and mortality comparisons among spinosad-, imidacloprid-, and methomyl-containing baits against susceptible Musca domestica (Diptera: Muscidae) under laboratory conditions. J Econ Entomol 100:155–163

    Article  PubMed  Google Scholar 

  • Zhang L, Shi J, Gao X (2008) Inheritance of beta-cypermethrin resistance in the housefly Musca domestica (Diptera: Muscidae). Pest Manag Sci 64:185–190

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, He S, Chen J (2014) Monitoring of Bactrocera dorsalis (Diptera: Tephritidae) resistance to cyantraniliprole in the south of China. J Econ Entomol 107:1233–1238

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Prof. L. M. Tao (School of Pharmacy, East China University of Science and Technology) for his editorial assistance. We thank the Syngenta (China) Investment Co., Ltd for providing Zyrox® fly bait test samples.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Z. Yuan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Q.F., Li, X., Hunag, J.B. et al. Efficacy of cyantraniliprole fly bait against housefly (Musca domestica L.) under laboratory conditions. Parasitol Res 114, 3525–3528 (2015). https://doi.org/10.1007/s00436-015-4584-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4584-y

Keywords

Navigation